Exon first nucleotide mutations in splicing: evaluation of in silico prediction tools.
Mutations in the first nucleotide of exons (E(+1)) mostly affect pre-mRNA splicing when found in AG-dependent 3' splice sites, whereas AG-independent splice sites are more resistant. The AG-dependency, however, may be difficult to assess just from primary sequence data as it depends on the qual...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1a828e23d9c641e8b2d7b6964207b25e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1a828e23d9c641e8b2d7b6964207b25e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1a828e23d9c641e8b2d7b6964207b25e2021-11-18T08:31:28ZExon first nucleotide mutations in splicing: evaluation of in silico prediction tools.1932-620310.1371/journal.pone.0089570https://doaj.org/article/1a828e23d9c641e8b2d7b6964207b25e2014-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24586880/?tool=EBIhttps://doaj.org/toc/1932-6203Mutations in the first nucleotide of exons (E(+1)) mostly affect pre-mRNA splicing when found in AG-dependent 3' splice sites, whereas AG-independent splice sites are more resistant. The AG-dependency, however, may be difficult to assess just from primary sequence data as it depends on the quality of the polypyrimidine tract. For this reason, in silico prediction tools are commonly used to score 3' splice sites. In this study, we have assessed the ability of sequence features and in silico prediction tools to discriminate between the splicing-affecting and non-affecting E(+1) variants. For this purpose, we newly tested 16 substitutions in vitro and derived other variants from literature. Surprisingly, we found that in the presence of the substituting nucleotide, the quality of the polypyrimidine tract alone was not conclusive about its splicing fate. Rather, it was the identity of the substituting nucleotide that markedly influenced it. Among the computational tools tested, the best performance was achieved using the Maximum Entropy Model and Position-Specific Scoring Matrix. As a result of this study, we have now established preliminary discriminative cut-off values showing sensitivity up to 95% and specificity up to 90%. This is expected to improve our ability to detect splicing-affecting variants in a clinical genetic setting.Lucie GrodeckáPavla LockerováBarbora RavčukováEmanuele BurattiFrancisco E BaralleLadislav DušekTomáš FreibergerPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 9, Iss 2, p e89570 (2014) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Lucie Grodecká Pavla Lockerová Barbora Ravčuková Emanuele Buratti Francisco E Baralle Ladislav Dušek Tomáš Freiberger Exon first nucleotide mutations in splicing: evaluation of in silico prediction tools. |
description |
Mutations in the first nucleotide of exons (E(+1)) mostly affect pre-mRNA splicing when found in AG-dependent 3' splice sites, whereas AG-independent splice sites are more resistant. The AG-dependency, however, may be difficult to assess just from primary sequence data as it depends on the quality of the polypyrimidine tract. For this reason, in silico prediction tools are commonly used to score 3' splice sites. In this study, we have assessed the ability of sequence features and in silico prediction tools to discriminate between the splicing-affecting and non-affecting E(+1) variants. For this purpose, we newly tested 16 substitutions in vitro and derived other variants from literature. Surprisingly, we found that in the presence of the substituting nucleotide, the quality of the polypyrimidine tract alone was not conclusive about its splicing fate. Rather, it was the identity of the substituting nucleotide that markedly influenced it. Among the computational tools tested, the best performance was achieved using the Maximum Entropy Model and Position-Specific Scoring Matrix. As a result of this study, we have now established preliminary discriminative cut-off values showing sensitivity up to 95% and specificity up to 90%. This is expected to improve our ability to detect splicing-affecting variants in a clinical genetic setting. |
format |
article |
author |
Lucie Grodecká Pavla Lockerová Barbora Ravčuková Emanuele Buratti Francisco E Baralle Ladislav Dušek Tomáš Freiberger |
author_facet |
Lucie Grodecká Pavla Lockerová Barbora Ravčuková Emanuele Buratti Francisco E Baralle Ladislav Dušek Tomáš Freiberger |
author_sort |
Lucie Grodecká |
title |
Exon first nucleotide mutations in splicing: evaluation of in silico prediction tools. |
title_short |
Exon first nucleotide mutations in splicing: evaluation of in silico prediction tools. |
title_full |
Exon first nucleotide mutations in splicing: evaluation of in silico prediction tools. |
title_fullStr |
Exon first nucleotide mutations in splicing: evaluation of in silico prediction tools. |
title_full_unstemmed |
Exon first nucleotide mutations in splicing: evaluation of in silico prediction tools. |
title_sort |
exon first nucleotide mutations in splicing: evaluation of in silico prediction tools. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2014 |
url |
https://doaj.org/article/1a828e23d9c641e8b2d7b6964207b25e |
work_keys_str_mv |
AT luciegrodecka exonfirstnucleotidemutationsinsplicingevaluationofinsilicopredictiontools AT pavlalockerova exonfirstnucleotidemutationsinsplicingevaluationofinsilicopredictiontools AT barboraravcukova exonfirstnucleotidemutationsinsplicingevaluationofinsilicopredictiontools AT emanueleburatti exonfirstnucleotidemutationsinsplicingevaluationofinsilicopredictiontools AT franciscoebaralle exonfirstnucleotidemutationsinsplicingevaluationofinsilicopredictiontools AT ladislavdusek exonfirstnucleotidemutationsinsplicingevaluationofinsilicopredictiontools AT tomasfreiberger exonfirstnucleotidemutationsinsplicingevaluationofinsilicopredictiontools |
_version_ |
1718421669325832192 |