A Combined Anomaly and Trend Detection System for Industrial Robot Gear Condition Monitoring

Conditions monitoring of industrial robot gears has the potential to increase the productivity of highly automated production systems. The huge amount of health indicators needed to monitor multiple gears of multiple robots requires an automated system for anomaly and trend detection. In this public...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Corbinian Nentwich, Gunther Reinhart
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/1ade47a3f0a345c09b9292db1dcc4743
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1ade47a3f0a345c09b9292db1dcc4743
record_format dspace
spelling oai:doaj.org-article:1ade47a3f0a345c09b9292db1dcc47432021-11-11T15:24:03ZA Combined Anomaly and Trend Detection System for Industrial Robot Gear Condition Monitoring10.3390/app1121104032076-3417https://doaj.org/article/1ade47a3f0a345c09b9292db1dcc47432021-11-01T00:00:00Zhttps://www.mdpi.com/2076-3417/11/21/10403https://doaj.org/toc/2076-3417Conditions monitoring of industrial robot gears has the potential to increase the productivity of highly automated production systems. The huge amount of health indicators needed to monitor multiple gears of multiple robots requires an automated system for anomaly and trend detection. In this publication, such a system is presented and suitable anomaly detection and trend detection methods for the system are selected based on synthetic and real world industrial application data. A statistical test, namely the Cox-Stuart test, appears to be the most suitable approach for trend detection and the local outlier factor algorithm or the long short-term neural network performs best for anomaly detection in the application of industrial robot gear condition monitoring in the presented experiments.Corbinian NentwichGunther ReinhartMDPI AGarticlecondition monitoringindustrial robotsanomaly detectiontrend detectionTechnologyTEngineering (General). Civil engineering (General)TA1-2040Biology (General)QH301-705.5PhysicsQC1-999ChemistryQD1-999ENApplied Sciences, Vol 11, Iss 10403, p 10403 (2021)
institution DOAJ
collection DOAJ
language EN
topic condition monitoring
industrial robots
anomaly detection
trend detection
Technology
T
Engineering (General). Civil engineering (General)
TA1-2040
Biology (General)
QH301-705.5
Physics
QC1-999
Chemistry
QD1-999
spellingShingle condition monitoring
industrial robots
anomaly detection
trend detection
Technology
T
Engineering (General). Civil engineering (General)
TA1-2040
Biology (General)
QH301-705.5
Physics
QC1-999
Chemistry
QD1-999
Corbinian Nentwich
Gunther Reinhart
A Combined Anomaly and Trend Detection System for Industrial Robot Gear Condition Monitoring
description Conditions monitoring of industrial robot gears has the potential to increase the productivity of highly automated production systems. The huge amount of health indicators needed to monitor multiple gears of multiple robots requires an automated system for anomaly and trend detection. In this publication, such a system is presented and suitable anomaly detection and trend detection methods for the system are selected based on synthetic and real world industrial application data. A statistical test, namely the Cox-Stuart test, appears to be the most suitable approach for trend detection and the local outlier factor algorithm or the long short-term neural network performs best for anomaly detection in the application of industrial robot gear condition monitoring in the presented experiments.
format article
author Corbinian Nentwich
Gunther Reinhart
author_facet Corbinian Nentwich
Gunther Reinhart
author_sort Corbinian Nentwich
title A Combined Anomaly and Trend Detection System for Industrial Robot Gear Condition Monitoring
title_short A Combined Anomaly and Trend Detection System for Industrial Robot Gear Condition Monitoring
title_full A Combined Anomaly and Trend Detection System for Industrial Robot Gear Condition Monitoring
title_fullStr A Combined Anomaly and Trend Detection System for Industrial Robot Gear Condition Monitoring
title_full_unstemmed A Combined Anomaly and Trend Detection System for Industrial Robot Gear Condition Monitoring
title_sort combined anomaly and trend detection system for industrial robot gear condition monitoring
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/1ade47a3f0a345c09b9292db1dcc4743
work_keys_str_mv AT corbiniannentwich acombinedanomalyandtrenddetectionsystemforindustrialrobotgearconditionmonitoring
AT guntherreinhart acombinedanomalyandtrenddetectionsystemforindustrialrobotgearconditionmonitoring
AT corbiniannentwich combinedanomalyandtrenddetectionsystemforindustrialrobotgearconditionmonitoring
AT guntherreinhart combinedanomalyandtrenddetectionsystemforindustrialrobotgearconditionmonitoring
_version_ 1718435353697714176