Improving the Design of Undergraduate Biology Courses toward the Goal of Retention: The Case of Real-World Inquiry and Active Learning through Metagenomics
Retention in science is low in undergraduate populations, especially for under-represented minority (URM) and first generation (FG) college students. Thus, educators have been called upon to design curricula to counteract this trend. This study examined variables most likely to lead to retention, su...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1b928f0fdc4846ccaccc15ffc8028698 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1b928f0fdc4846ccaccc15ffc8028698 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1b928f0fdc4846ccaccc15ffc80286982021-11-15T15:04:42ZImproving the Design of Undergraduate Biology Courses toward the Goal of Retention: The Case of Real-World Inquiry and Active Learning through Metagenomics10.1128/jmbe.v21i1.19651935-78851935-7877https://doaj.org/article/1b928f0fdc4846ccaccc15ffc80286982020-01-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/jmbe.v21i1.1965https://doaj.org/toc/1935-7877https://doaj.org/toc/1935-7885Retention in science is low in undergraduate populations, especially for under-represented minority (URM) and first generation (FG) college students. Thus, educators have been called upon to design curricula to counteract this trend. This study examined variables most likely to lead to retention, such as increased achievement, improved attitudes, and self-efficacy beliefs, through participation in active learning and real-world research experiences in an introductory biology course. The research experience was embedded in metagenomics content and processes that have increasingly gained focus in microbiology. This study also investigated differences in learning outcomes when the curriculum was infused with more active learning. The active learning components included integrating interactive technology into the pre-lab lectures, providing students with authentic protocols to conduct lab work, and allowing students to rerun problematic samples. Results showed increased achievement for URM/FG students, although this was not strongly tied to the active learning elements incorporated into the three-week metagenomics research experience. However, students participating in research with more active learning did report higher frequencies of engaging in mastery experiences (an important source of self-efficacy) when compared with students engaged in research with less active learning. This analysis can aid in identifying specific curricular design features associated with promoting retention in undergraduate biology and science programs in general.Amanda M. CottoneSusan YoonAmerican Society for MicrobiologyarticleSpecial aspects of educationLC8-6691Biology (General)QH301-705.5ENJournal of Microbiology & Biology Education, Vol 21, Iss 1 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Special aspects of education LC8-6691 Biology (General) QH301-705.5 |
spellingShingle |
Special aspects of education LC8-6691 Biology (General) QH301-705.5 Amanda M. Cottone Susan Yoon Improving the Design of Undergraduate Biology Courses toward the Goal of Retention: The Case of Real-World Inquiry and Active Learning through Metagenomics |
description |
Retention in science is low in undergraduate populations, especially for under-represented minority (URM) and first generation (FG) college students. Thus, educators have been called upon to design curricula to counteract this trend. This study examined variables most likely to lead to retention, such as increased achievement, improved attitudes, and self-efficacy beliefs, through participation in active learning and real-world research experiences in an introductory biology course. The research experience was embedded in metagenomics content and processes that have increasingly gained focus in microbiology. This study also investigated differences in learning outcomes when the curriculum was infused with more active learning. The active learning components included integrating interactive technology into the pre-lab lectures, providing students with authentic protocols to conduct lab work, and allowing students to rerun problematic samples. Results showed increased achievement for URM/FG students, although this was not strongly tied to the active learning elements incorporated into the three-week metagenomics research experience. However, students participating in research with more active learning did report higher frequencies of engaging in mastery experiences (an important source of self-efficacy) when compared with students engaged in research with less active learning. This analysis can aid in identifying specific curricular design features associated with promoting retention in undergraduate biology and science programs in general. |
format |
article |
author |
Amanda M. Cottone Susan Yoon |
author_facet |
Amanda M. Cottone Susan Yoon |
author_sort |
Amanda M. Cottone |
title |
Improving the Design of Undergraduate Biology Courses toward the Goal of Retention: The Case of Real-World Inquiry and Active Learning through Metagenomics |
title_short |
Improving the Design of Undergraduate Biology Courses toward the Goal of Retention: The Case of Real-World Inquiry and Active Learning through Metagenomics |
title_full |
Improving the Design of Undergraduate Biology Courses toward the Goal of Retention: The Case of Real-World Inquiry and Active Learning through Metagenomics |
title_fullStr |
Improving the Design of Undergraduate Biology Courses toward the Goal of Retention: The Case of Real-World Inquiry and Active Learning through Metagenomics |
title_full_unstemmed |
Improving the Design of Undergraduate Biology Courses toward the Goal of Retention: The Case of Real-World Inquiry and Active Learning through Metagenomics |
title_sort |
improving the design of undergraduate biology courses toward the goal of retention: the case of real-world inquiry and active learning through metagenomics |
publisher |
American Society for Microbiology |
publishDate |
2020 |
url |
https://doaj.org/article/1b928f0fdc4846ccaccc15ffc8028698 |
work_keys_str_mv |
AT amandamcottone improvingthedesignofundergraduatebiologycoursestowardthegoalofretentionthecaseofrealworldinquiryandactivelearningthroughmetagenomics AT susanyoon improvingthedesignofundergraduatebiologycoursestowardthegoalofretentionthecaseofrealworldinquiryandactivelearningthroughmetagenomics |
_version_ |
1718428237288177664 |