A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns
Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.
Guardado en:
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1eb66053b1d54801a9b93093526fbf22 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1eb66053b1d54801a9b93093526fbf22 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1eb66053b1d54801a9b93093526fbf222021-12-02T17:31:54ZA deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns10.1038/s41467-019-13825-82041-1723https://doaj.org/article/1eb66053b1d54801a9b93093526fbf222020-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13825-8https://doaj.org/toc/2041-1723Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.Wei JiaoGurnit AtwalPaz PolakRosa KarlicEdwin CuppenPCAWG Tumor Subtypes and Clinical Translation Working GroupAlexandra DanyiJeroen de RidderCarla van HerpenMartijn P. LolkemaNeeltje SteeghsGad GetzQuaid MorrisLincoln D. SteinPCAWG ConsortiumNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-12 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Wei Jiao Gurnit Atwal Paz Polak Rosa Karlic Edwin Cuppen PCAWG Tumor Subtypes and Clinical Translation Working Group Alexandra Danyi Jeroen de Ridder Carla van Herpen Martijn P. Lolkema Neeltje Steeghs Gad Getz Quaid Morris Lincoln D. Stein PCAWG Consortium A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns |
description |
Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data. |
format |
article |
author |
Wei Jiao Gurnit Atwal Paz Polak Rosa Karlic Edwin Cuppen PCAWG Tumor Subtypes and Clinical Translation Working Group Alexandra Danyi Jeroen de Ridder Carla van Herpen Martijn P. Lolkema Neeltje Steeghs Gad Getz Quaid Morris Lincoln D. Stein PCAWG Consortium |
author_facet |
Wei Jiao Gurnit Atwal Paz Polak Rosa Karlic Edwin Cuppen PCAWG Tumor Subtypes and Clinical Translation Working Group Alexandra Danyi Jeroen de Ridder Carla van Herpen Martijn P. Lolkema Neeltje Steeghs Gad Getz Quaid Morris Lincoln D. Stein PCAWG Consortium |
author_sort |
Wei Jiao |
title |
A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns |
title_short |
A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns |
title_full |
A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns |
title_fullStr |
A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns |
title_full_unstemmed |
A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns |
title_sort |
deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/1eb66053b1d54801a9b93093526fbf22 |
work_keys_str_mv |
AT weijiao adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns AT gurnitatwal adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns AT pazpolak adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns AT rosakarlic adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns AT edwincuppen adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns AT pcawgtumorsubtypesandclinicaltranslationworkinggroup adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns AT alexandradanyi adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns AT jeroenderidder adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns AT carlavanherpen adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns AT martijnplolkema adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns AT neeltjesteeghs adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns AT gadgetz adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns AT quaidmorris adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns AT lincolndstein adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns AT pcawgconsortium adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns AT weijiao deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns AT gurnitatwal deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns AT pazpolak deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns AT rosakarlic deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns AT edwincuppen deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns AT pcawgtumorsubtypesandclinicaltranslationworkinggroup deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns AT alexandradanyi deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns AT jeroenderidder deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns AT carlavanherpen deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns AT martijnplolkema deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns AT neeltjesteeghs deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns AT gadgetz deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns AT quaidmorris deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns AT lincolndstein deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns AT pcawgconsortium deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns |
_version_ |
1718380415283101696 |