A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns

Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

Guardado en:
Detalles Bibliográficos
Autores principales: Wei Jiao, Gurnit Atwal, Paz Polak, Rosa Karlic, Edwin Cuppen, PCAWG Tumor Subtypes and Clinical Translation Working Group, Alexandra Danyi, Jeroen de Ridder, Carla van Herpen, Martijn P. Lolkema, Neeltje Steeghs, Gad Getz, Quaid Morris, Lincoln D. Stein, PCAWG Consortium
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/1eb66053b1d54801a9b93093526fbf22
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1eb66053b1d54801a9b93093526fbf22
record_format dspace
spelling oai:doaj.org-article:1eb66053b1d54801a9b93093526fbf222021-12-02T17:31:54ZA deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns10.1038/s41467-019-13825-82041-1723https://doaj.org/article/1eb66053b1d54801a9b93093526fbf222020-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13825-8https://doaj.org/toc/2041-1723Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.Wei JiaoGurnit AtwalPaz PolakRosa KarlicEdwin CuppenPCAWG Tumor Subtypes and Clinical Translation Working GroupAlexandra DanyiJeroen de RidderCarla van HerpenMartijn P. LolkemaNeeltje SteeghsGad GetzQuaid MorrisLincoln D. SteinPCAWG ConsortiumNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-12 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Wei Jiao
Gurnit Atwal
Paz Polak
Rosa Karlic
Edwin Cuppen
PCAWG Tumor Subtypes and Clinical Translation Working Group
Alexandra Danyi
Jeroen de Ridder
Carla van Herpen
Martijn P. Lolkema
Neeltje Steeghs
Gad Getz
Quaid Morris
Lincoln D. Stein
PCAWG Consortium
A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns
description Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.
format article
author Wei Jiao
Gurnit Atwal
Paz Polak
Rosa Karlic
Edwin Cuppen
PCAWG Tumor Subtypes and Clinical Translation Working Group
Alexandra Danyi
Jeroen de Ridder
Carla van Herpen
Martijn P. Lolkema
Neeltje Steeghs
Gad Getz
Quaid Morris
Lincoln D. Stein
PCAWG Consortium
author_facet Wei Jiao
Gurnit Atwal
Paz Polak
Rosa Karlic
Edwin Cuppen
PCAWG Tumor Subtypes and Clinical Translation Working Group
Alexandra Danyi
Jeroen de Ridder
Carla van Herpen
Martijn P. Lolkema
Neeltje Steeghs
Gad Getz
Quaid Morris
Lincoln D. Stein
PCAWG Consortium
author_sort Wei Jiao
title A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns
title_short A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns
title_full A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns
title_fullStr A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns
title_full_unstemmed A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns
title_sort deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/1eb66053b1d54801a9b93093526fbf22
work_keys_str_mv AT weijiao adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
AT gurnitatwal adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
AT pazpolak adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
AT rosakarlic adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
AT edwincuppen adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
AT pcawgtumorsubtypesandclinicaltranslationworkinggroup adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
AT alexandradanyi adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
AT jeroenderidder adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
AT carlavanherpen adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
AT martijnplolkema adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
AT neeltjesteeghs adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
AT gadgetz adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
AT quaidmorris adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
AT lincolndstein adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
AT pcawgconsortium adeeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
AT weijiao deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
AT gurnitatwal deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
AT pazpolak deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
AT rosakarlic deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
AT edwincuppen deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
AT pcawgtumorsubtypesandclinicaltranslationworkinggroup deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
AT alexandradanyi deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
AT jeroenderidder deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
AT carlavanherpen deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
AT martijnplolkema deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
AT neeltjesteeghs deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
AT gadgetz deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
AT quaidmorris deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
AT lincolndstein deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
AT pcawgconsortium deeplearningsystemaccuratelyclassifiesprimaryandmetastaticcancersusingpassengermutationpatterns
_version_ 1718380415283101696