A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns
Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.
Guardado en:
Autores principales: | Wei Jiao, Gurnit Atwal, Paz Polak, Rosa Karlic, Edwin Cuppen, PCAWG Tumor Subtypes and Clinical Translation Working Group, Alexandra Danyi, Jeroen de Ridder, Carla van Herpen, Martijn P. Lolkema, Neeltje Steeghs, Gad Getz, Quaid Morris, Lincoln D. Stein, PCAWG Consortium |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1eb66053b1d54801a9b93093526fbf22 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Sex differences in oncogenic mutational processes
por: Constance H. Li, et al.
Publicado: (2020) -
Combined burden and functional impact tests for cancer driver discovery using DriverPower
por: Shimin Shuai, et al.
Publicado: (2020) -
Reconstructing evolutionary trajectories of mutation signature activities in cancer using TrackSig
por: Yulia Rubanova, et al.
Publicado: (2020) -
High-coverage whole-genome analysis of 1220 cancers reveals hundreds of genes deregulated by rearrangement-mediated cis-regulatory alterations
por: Yiqun Zhang, et al.
Publicado: (2020) -
Development of Obesity: The Driver and the Passenger
por: Kopp W
Publicado: (2020)