The Impact of the HydroxyMethylCytosine epigenetic signature on DNA structure and function
We present a comprehensive, experimental and theoretical study of the impact of 5-hydroxymethylation of DNA cytosine. Using molecular dynamics, biophysical experiments and NMR spectroscopy, we found that Ten-Eleven translocation (TET) dioxygenases generate an epigenetic variant with structural and p...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1f6de9e1bc4c478a93769f666de093a8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1f6de9e1bc4c478a93769f666de093a8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1f6de9e1bc4c478a93769f666de093a82021-11-25T05:42:05ZThe Impact of the HydroxyMethylCytosine epigenetic signature on DNA structure and function1553-734X1553-7358https://doaj.org/article/1f6de9e1bc4c478a93769f666de093a82021-11-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8601608/?tool=EBIhttps://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358We present a comprehensive, experimental and theoretical study of the impact of 5-hydroxymethylation of DNA cytosine. Using molecular dynamics, biophysical experiments and NMR spectroscopy, we found that Ten-Eleven translocation (TET) dioxygenases generate an epigenetic variant with structural and physical properties similar to those of 5-methylcytosine. Experiments and simulations demonstrate that 5-methylcytosine (mC) and 5-hydroxymethylcytosine (hmC) generally lead to stiffer DNA than normal cytosine, with poorer circularization efficiencies and lower ability to form nucleosomes. In particular, we can rule out the hypothesis that hydroxymethylation reverts to unmodified cytosine physical properties, as hmC is even more rigid than mC. Thus, we do not expect dramatic changes in the chromatin structure induced by differences in physical properties between d(mCpG) and d(hmCpG). Conversely, our simulations suggest that methylated-DNA binding domains (MBDs), associated with repression activities, are sensitive to the substitution d(mCpG) ➔ d(hmCpG), while MBD3 which has a dual activation/repression activity is not sensitive to the d(mCpG) d(hmCpG) change. Overall, while gene activity changes due to cytosine methylation are the result of the combination of stiffness-related chromatin reorganization and MBD binding, those associated to 5-hydroxylation of methylcytosine could be explained by a change in the balance of repression/activation pathways related to differential MBD binding. Author summary In Eukaryotic cells, DNA epigenetic modifications play an important role in gene expression and regulation, and protein recognition. In this work we investigate the physical implications of cytosine 5-hydroxymethylation on DNA, its structural and flexibility differences with methylated and unmodified cytosine using molecular dynamics, biophysical experiments and NMR spectroscopy. In particular the effect of hydroxyl group on free energy of nucleosome and Methyl binding Protein (MBD) binding, comparing in silico and experimental data to shed light on the effect of the reduced flexibility and the direct protein-DNA recognition.Federica BattistiniPablo D. DansMontserrat TerrazasChiara L. CastellazziGuillem PortellaMireia LabradorNúria VillegasIsabelle Brun-HeathCarlos GonzálezModesto OrozcoPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 17, Iss 11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Federica Battistini Pablo D. Dans Montserrat Terrazas Chiara L. Castellazzi Guillem Portella Mireia Labrador Núria Villegas Isabelle Brun-Heath Carlos González Modesto Orozco The Impact of the HydroxyMethylCytosine epigenetic signature on DNA structure and function |
description |
We present a comprehensive, experimental and theoretical study of the impact of 5-hydroxymethylation of DNA cytosine. Using molecular dynamics, biophysical experiments and NMR spectroscopy, we found that Ten-Eleven translocation (TET) dioxygenases generate an epigenetic variant with structural and physical properties similar to those of 5-methylcytosine. Experiments and simulations demonstrate that 5-methylcytosine (mC) and 5-hydroxymethylcytosine (hmC) generally lead to stiffer DNA than normal cytosine, with poorer circularization efficiencies and lower ability to form nucleosomes. In particular, we can rule out the hypothesis that hydroxymethylation reverts to unmodified cytosine physical properties, as hmC is even more rigid than mC. Thus, we do not expect dramatic changes in the chromatin structure induced by differences in physical properties between d(mCpG) and d(hmCpG). Conversely, our simulations suggest that methylated-DNA binding domains (MBDs), associated with repression activities, are sensitive to the substitution d(mCpG) ➔ d(hmCpG), while MBD3 which has a dual activation/repression activity is not sensitive to the d(mCpG) d(hmCpG) change. Overall, while gene activity changes due to cytosine methylation are the result of the combination of stiffness-related chromatin reorganization and MBD binding, those associated to 5-hydroxylation of methylcytosine could be explained by a change in the balance of repression/activation pathways related to differential MBD binding. Author summary In Eukaryotic cells, DNA epigenetic modifications play an important role in gene expression and regulation, and protein recognition. In this work we investigate the physical implications of cytosine 5-hydroxymethylation on DNA, its structural and flexibility differences with methylated and unmodified cytosine using molecular dynamics, biophysical experiments and NMR spectroscopy. In particular the effect of hydroxyl group on free energy of nucleosome and Methyl binding Protein (MBD) binding, comparing in silico and experimental data to shed light on the effect of the reduced flexibility and the direct protein-DNA recognition. |
format |
article |
author |
Federica Battistini Pablo D. Dans Montserrat Terrazas Chiara L. Castellazzi Guillem Portella Mireia Labrador Núria Villegas Isabelle Brun-Heath Carlos González Modesto Orozco |
author_facet |
Federica Battistini Pablo D. Dans Montserrat Terrazas Chiara L. Castellazzi Guillem Portella Mireia Labrador Núria Villegas Isabelle Brun-Heath Carlos González Modesto Orozco |
author_sort |
Federica Battistini |
title |
The Impact of the HydroxyMethylCytosine epigenetic signature on DNA structure and function |
title_short |
The Impact of the HydroxyMethylCytosine epigenetic signature on DNA structure and function |
title_full |
The Impact of the HydroxyMethylCytosine epigenetic signature on DNA structure and function |
title_fullStr |
The Impact of the HydroxyMethylCytosine epigenetic signature on DNA structure and function |
title_full_unstemmed |
The Impact of the HydroxyMethylCytosine epigenetic signature on DNA structure and function |
title_sort |
impact of the hydroxymethylcytosine epigenetic signature on dna structure and function |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/1f6de9e1bc4c478a93769f666de093a8 |
work_keys_str_mv |
AT federicabattistini theimpactofthehydroxymethylcytosineepigeneticsignatureondnastructureandfunction AT pabloddans theimpactofthehydroxymethylcytosineepigeneticsignatureondnastructureandfunction AT montserratterrazas theimpactofthehydroxymethylcytosineepigeneticsignatureondnastructureandfunction AT chiaralcastellazzi theimpactofthehydroxymethylcytosineepigeneticsignatureondnastructureandfunction AT guillemportella theimpactofthehydroxymethylcytosineepigeneticsignatureondnastructureandfunction AT mireialabrador theimpactofthehydroxymethylcytosineepigeneticsignatureondnastructureandfunction AT nuriavillegas theimpactofthehydroxymethylcytosineepigeneticsignatureondnastructureandfunction AT isabellebrunheath theimpactofthehydroxymethylcytosineepigeneticsignatureondnastructureandfunction AT carlosgonzalez theimpactofthehydroxymethylcytosineepigeneticsignatureondnastructureandfunction AT modestoorozco theimpactofthehydroxymethylcytosineepigeneticsignatureondnastructureandfunction AT federicabattistini impactofthehydroxymethylcytosineepigeneticsignatureondnastructureandfunction AT pabloddans impactofthehydroxymethylcytosineepigeneticsignatureondnastructureandfunction AT montserratterrazas impactofthehydroxymethylcytosineepigeneticsignatureondnastructureandfunction AT chiaralcastellazzi impactofthehydroxymethylcytosineepigeneticsignatureondnastructureandfunction AT guillemportella impactofthehydroxymethylcytosineepigeneticsignatureondnastructureandfunction AT mireialabrador impactofthehydroxymethylcytosineepigeneticsignatureondnastructureandfunction AT nuriavillegas impactofthehydroxymethylcytosineepigeneticsignatureondnastructureandfunction AT isabellebrunheath impactofthehydroxymethylcytosineepigeneticsignatureondnastructureandfunction AT carlosgonzalez impactofthehydroxymethylcytosineepigeneticsignatureondnastructureandfunction AT modestoorozco impactofthehydroxymethylcytosineepigeneticsignatureondnastructureandfunction |
_version_ |
1718414504423849984 |