GenNet framework: interpretable deep learning for predicting phenotypes from genetic data

van Hilten and colleagues present GenNet, a deep-learning framework for predicting phenotype from genetic data. This framework generates interpretable neural networks that provide insight into the genetic basis of complex traits and diseases.

Guardado en:
Detalles Bibliográficos
Autores principales: Arno van Hilten, Steven A. Kushner, Manfred Kayser, M. Arfan Ikram, Hieab H. H. Adams, Caroline C. W. Klaver, Wiro J. Niessen, Gennady V. Roshchupkin
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/204c0fb0a15742cb9761a666d57de397
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:204c0fb0a15742cb9761a666d57de397
record_format dspace
spelling oai:doaj.org-article:204c0fb0a15742cb9761a666d57de3972021-12-02T17:25:42ZGenNet framework: interpretable deep learning for predicting phenotypes from genetic data10.1038/s42003-021-02622-z2399-3642https://doaj.org/article/204c0fb0a15742cb9761a666d57de3972021-09-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-02622-zhttps://doaj.org/toc/2399-3642van Hilten and colleagues present GenNet, a deep-learning framework for predicting phenotype from genetic data. This framework generates interpretable neural networks that provide insight into the genetic basis of complex traits and diseases.Arno van HiltenSteven A. KushnerManfred KayserM. Arfan IkramHieab H. H. AdamsCaroline C. W. KlaverWiro J. NiessenGennady V. RoshchupkinNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Arno van Hilten
Steven A. Kushner
Manfred Kayser
M. Arfan Ikram
Hieab H. H. Adams
Caroline C. W. Klaver
Wiro J. Niessen
Gennady V. Roshchupkin
GenNet framework: interpretable deep learning for predicting phenotypes from genetic data
description van Hilten and colleagues present GenNet, a deep-learning framework for predicting phenotype from genetic data. This framework generates interpretable neural networks that provide insight into the genetic basis of complex traits and diseases.
format article
author Arno van Hilten
Steven A. Kushner
Manfred Kayser
M. Arfan Ikram
Hieab H. H. Adams
Caroline C. W. Klaver
Wiro J. Niessen
Gennady V. Roshchupkin
author_facet Arno van Hilten
Steven A. Kushner
Manfred Kayser
M. Arfan Ikram
Hieab H. H. Adams
Caroline C. W. Klaver
Wiro J. Niessen
Gennady V. Roshchupkin
author_sort Arno van Hilten
title GenNet framework: interpretable deep learning for predicting phenotypes from genetic data
title_short GenNet framework: interpretable deep learning for predicting phenotypes from genetic data
title_full GenNet framework: interpretable deep learning for predicting phenotypes from genetic data
title_fullStr GenNet framework: interpretable deep learning for predicting phenotypes from genetic data
title_full_unstemmed GenNet framework: interpretable deep learning for predicting phenotypes from genetic data
title_sort gennet framework: interpretable deep learning for predicting phenotypes from genetic data
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/204c0fb0a15742cb9761a666d57de397
work_keys_str_mv AT arnovanhilten gennetframeworkinterpretabledeeplearningforpredictingphenotypesfromgeneticdata
AT stevenakushner gennetframeworkinterpretabledeeplearningforpredictingphenotypesfromgeneticdata
AT manfredkayser gennetframeworkinterpretabledeeplearningforpredictingphenotypesfromgeneticdata
AT marfanikram gennetframeworkinterpretabledeeplearningforpredictingphenotypesfromgeneticdata
AT hieabhhadams gennetframeworkinterpretabledeeplearningforpredictingphenotypesfromgeneticdata
AT carolinecwklaver gennetframeworkinterpretabledeeplearningforpredictingphenotypesfromgeneticdata
AT wirojniessen gennetframeworkinterpretabledeeplearningforpredictingphenotypesfromgeneticdata
AT gennadyvroshchupkin gennetframeworkinterpretabledeeplearningforpredictingphenotypesfromgeneticdata
_version_ 1718380893970628608