GenNet framework: interpretable deep learning for predicting phenotypes from genetic data
van Hilten and colleagues present GenNet, a deep-learning framework for predicting phenotype from genetic data. This framework generates interpretable neural networks that provide insight into the genetic basis of complex traits and diseases.
Guardado en:
Autores principales: | Arno van Hilten, Steven A. Kushner, Manfred Kayser, M. Arfan Ikram, Hieab H. H. Adams, Caroline C. W. Klaver, Wiro J. Niessen, Gennady V. Roshchupkin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/204c0fb0a15742cb9761a666d57de397 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Heritability of the shape of subcortical brain structures in the general population
por: Gennady V. Roshchupkin, et al.
Publicado: (2016) -
MultiCapsNet: A General Framework for Data Integration and Interpretable Classification
por: Lifei Wang, et al.
Publicado: (2021) -
Circulating Myeloperoxidase (MPO)-DNA complexes as marker for Neutrophil Extracellular Traps (NETs) levels and the association with cardiovascular risk factors in the general population.
por: Samantha J Donkel, et al.
Publicado: (2021) -
Del gen egoísta al gen altruista
por: Fernández Galíndez, Oscar José
Publicado: (2010) - GénEros