Long-term artificial sweetener acesulfame potassium treatment alters neurometabolic functions in C57BL/6J mice.

With the prevalence of obesity, artificial, non-nutritive sweeteners have been widely used as dietary supplements that provide sweet taste without excessive caloric load. In order to better understand the overall actions of artificial sweeteners, especially when they are chronically used, we investi...

Full description

Saved in:
Bibliographic Details
Main Authors: Wei-na Cong, Rui Wang, Huan Cai, Caitlin M Daimon, Morten Scheibye-Knudsen, Vilhelm A Bohr, Rebecca Turkin, William H Wood, Kevin G Becker, Ruin Moaddel, Stuart Maudsley, Bronwen Martin
Format: article
Language:EN
Published: Public Library of Science (PLoS) 2013
Subjects:
R
Q
Online Access:https://doaj.org/article/22b5cfc57d0d495a95b116390e6d0f09
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the prevalence of obesity, artificial, non-nutritive sweeteners have been widely used as dietary supplements that provide sweet taste without excessive caloric load. In order to better understand the overall actions of artificial sweeteners, especially when they are chronically used, we investigated the peripheral and central nervous system effects of protracted exposure to a widely used artificial sweetener, acesulfame K (ACK). We found that extended ACK exposure (40 weeks) in normal C57BL/6J mice demonstrated a moderate and limited influence on metabolic homeostasis, including altering fasting insulin and leptin levels, pancreatic islet size and lipid levels, without affecting insulin sensitivity and bodyweight. Interestingly, impaired cognitive memory functions (evaluated by Morris Water Maze and Novel Objective Preference tests) were found in ACK-treated C57BL/6J mice, while no differences in motor function and anxiety levels were detected. The generation of an ACK-induced neurological phenotype was associated with metabolic dysregulation (glycolysis inhibition and functional ATP depletion) and neurosynaptic abnormalities (dysregulation of TrkB-mediated BDNF and Akt/Erk-mediated cell growth/survival pathway) in hippocampal neurons. Our data suggest that chronic use of ACK could affect cognitive functions, potentially via altering neuro-metabolic functions in male C57BL/6J mice.