Adaptive Similarity Function with Structural Features of Network Embedding for Missing Link Prediction
Link prediction is a fundamental problem of data science, which usually calls for unfolding the mechanisms that govern the micro-dynamics of networks. In this regard, using features obtained from network embedding for predicting links has drawn widespread attention. Although methods based on edge fe...
Enregistré dans:
Auteurs principaux: | Chuanting Zhang, Ke-Ke Shang, Jingping Qiao |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Hindawi-Wiley
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/22f70b50c8954428a7b69aa02e6f2d39 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A Discourse Coherence Analysis Method Combining Sentence Embedding and Dimension Grid
par: Lanlan Jiang, et autres
Publié: (2021) -
A PCC-Ensemble-TCN model for wind turbine icing detection using class-imbalanced and label-missing SCADA data
par: Shenyi Ding, et autres
Publié: (2021) -
Comparative Study on Heart Disease Prediction Using Feature Selection Techniques on Classification Algorithms
par: Kaushalya Dissanayake, et autres
Publié: (2021) -
Feature fusion-based collaborative learning for knowledge distillation
par: Yiting Li, et autres
Publié: (2021) -
Grasp Detection under Occlusions Using SIFT Features
par: Zhaojun Ye, et autres
Publié: (2021)