Deep learning-based estimation of Flory–Huggins parameter of A–B block copolymers from cross-sectional images of phase-separated structures
Abstract In this study, deep learning (DL)-based estimation of the Flory–Huggins χ parameter of A-B diblock copolymers from two-dimensional cross-sectional images of three-dimensional (3D) phase-separated structures were investigated. 3D structures with random networks of phase-separated domains wer...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/23277c4f89ff4663aec541534d1fba24 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|