Fast acquisition protocol for X-ray scattering tensor tomography
Abstract Microstructural information over an entire sample is important to understand the macroscopic behaviour of materials. X-ray scattering tensor tomography facilitates the investigation of the microstructural organisation in statistically large sample volumes. However, established acquisition p...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/23333b358fdc4fc99f3cad65be300fa2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:23333b358fdc4fc99f3cad65be300fa2 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:23333b358fdc4fc99f3cad65be300fa22021-12-05T12:15:42ZFast acquisition protocol for X-ray scattering tensor tomography10.1038/s41598-021-02467-w2045-2322https://doaj.org/article/23333b358fdc4fc99f3cad65be300fa22021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-02467-whttps://doaj.org/toc/2045-2322Abstract Microstructural information over an entire sample is important to understand the macroscopic behaviour of materials. X-ray scattering tensor tomography facilitates the investigation of the microstructural organisation in statistically large sample volumes. However, established acquisition protocols based on scanning small-angle X-ray scattering and X-ray grating interferometry inherently require long scan times even with highly brilliant X-ray sources. Recent developments in X-ray diffractive optics towards circular pattern arrays enable fast single-shot acquisition of the sample scattering properties with 2D omnidirectional sensitivity. X-ray scattering tensor tomography with the use of this circular grating array has been demonstrated. We propose here simple yet inherently rapid acquisition protocols for X-ray scattering tensor tomography leveraging on these new optical elements. Results from both simulation and experimental data, supported by a null space analysis, suggest that the proposed acquisition protocols are not only rapid but also corroborate that sufficient information for the accurate volumetric reconstruction of the scattering properties is provided. The proposed acquisition protocols will build the basis for rapid inspection and/or time-resolved tensor tomography of the microstructural organisation over an extended field of view.Jisoo KimMatias KagiasFederica MaroneZhitian ShiMarco StampanoniNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jisoo Kim Matias Kagias Federica Marone Zhitian Shi Marco Stampanoni Fast acquisition protocol for X-ray scattering tensor tomography |
description |
Abstract Microstructural information over an entire sample is important to understand the macroscopic behaviour of materials. X-ray scattering tensor tomography facilitates the investigation of the microstructural organisation in statistically large sample volumes. However, established acquisition protocols based on scanning small-angle X-ray scattering and X-ray grating interferometry inherently require long scan times even with highly brilliant X-ray sources. Recent developments in X-ray diffractive optics towards circular pattern arrays enable fast single-shot acquisition of the sample scattering properties with 2D omnidirectional sensitivity. X-ray scattering tensor tomography with the use of this circular grating array has been demonstrated. We propose here simple yet inherently rapid acquisition protocols for X-ray scattering tensor tomography leveraging on these new optical elements. Results from both simulation and experimental data, supported by a null space analysis, suggest that the proposed acquisition protocols are not only rapid but also corroborate that sufficient information for the accurate volumetric reconstruction of the scattering properties is provided. The proposed acquisition protocols will build the basis for rapid inspection and/or time-resolved tensor tomography of the microstructural organisation over an extended field of view. |
format |
article |
author |
Jisoo Kim Matias Kagias Federica Marone Zhitian Shi Marco Stampanoni |
author_facet |
Jisoo Kim Matias Kagias Federica Marone Zhitian Shi Marco Stampanoni |
author_sort |
Jisoo Kim |
title |
Fast acquisition protocol for X-ray scattering tensor tomography |
title_short |
Fast acquisition protocol for X-ray scattering tensor tomography |
title_full |
Fast acquisition protocol for X-ray scattering tensor tomography |
title_fullStr |
Fast acquisition protocol for X-ray scattering tensor tomography |
title_full_unstemmed |
Fast acquisition protocol for X-ray scattering tensor tomography |
title_sort |
fast acquisition protocol for x-ray scattering tensor tomography |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/23333b358fdc4fc99f3cad65be300fa2 |
work_keys_str_mv |
AT jisookim fastacquisitionprotocolforxrayscatteringtensortomography AT matiaskagias fastacquisitionprotocolforxrayscatteringtensortomography AT federicamarone fastacquisitionprotocolforxrayscatteringtensortomography AT zhitianshi fastacquisitionprotocolforxrayscatteringtensortomography AT marcostampanoni fastacquisitionprotocolforxrayscatteringtensortomography |
_version_ |
1718372064407060480 |