Machine learning quantum phases of matter beyond the fermion sign problem

Abstract State-of-the-art machine learning techniques promise to become a powerful tool in statistical mechanics via their capacity to distinguish different phases of matter in an automated way. Here we demonstrate that convolutional neural networks (CNN) can be optimized for quantum many-fermion sy...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Peter Broecker, Juan Carrasquilla, Roger G. Melko, Simon Trebst
Format: article
Langue:EN
Publié: Nature Portfolio 2017
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/2436c67e977c43d480a0a608687695d2
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!