Machine learning quantum phases of matter beyond the fermion sign problem
Abstract State-of-the-art machine learning techniques promise to become a powerful tool in statistical mechanics via their capacity to distinguish different phases of matter in an automated way. Here we demonstrate that convolutional neural networks (CNN) can be optimized for quantum many-fermion sy...
Guardado en:
Autores principales: | Peter Broecker, Juan Carrasquilla, Roger G. Melko, Simon Trebst |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2436c67e977c43d480a0a608687695d2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Symmetry Classes of Open Fermionic Quantum Matter
por: Alexander Altland, et al.
Publicado: (2021) -
Fermion-induced quantum critical points
por: Zi-Xiang Li, et al.
Publicado: (2017) -
Generalized lattice Wilson–Dirac fermions in (1 + 1) dimensions for atomic quantum simulation and topological phases
por: Yoshihito Kuno, et al.
Publicado: (2018) -
Quantum transport evidence of Weyl fermions in an epitaxial ferromagnetic oxide
por: Kosuke Takiguchi, et al.
Publicado: (2020) -
Quantum kinetic equation for fluids of spin-1/2 fermions
por: Ömer F. Dayi, et al.
Publicado: (2021)