Machine learning quantum phases of matter beyond the fermion sign problem

Abstract State-of-the-art machine learning techniques promise to become a powerful tool in statistical mechanics via their capacity to distinguish different phases of matter in an automated way. Here we demonstrate that convolutional neural networks (CNN) can be optimized for quantum many-fermion sy...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Peter Broecker, Juan Carrasquilla, Roger G. Melko, Simon Trebst
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/2436c67e977c43d480a0a608687695d2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!