Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins
ABSTRACT Trypanosomatids (order Kinetoplastida), including the human pathogens Trypanosoma cruzi (agent of Chagas disease), Trypanosoma brucei, (African sleeping sickness), and Leishmania (leishmaniasis), affect millions of people and animals globally. T. cruzi is considered one of the least studied...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/24601f0528a048dc8f67bc65964beaaa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:24601f0528a048dc8f67bc65964beaaa |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:24601f0528a048dc8f67bc65964beaaa2021-11-15T15:51:56ZRapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins10.1128/mBio.01788-172150-7511https://doaj.org/article/24601f0528a048dc8f67bc65964beaaa2017-12-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.01788-17https://doaj.org/toc/2150-7511ABSTRACT Trypanosomatids (order Kinetoplastida), including the human pathogens Trypanosoma cruzi (agent of Chagas disease), Trypanosoma brucei, (African sleeping sickness), and Leishmania (leishmaniasis), affect millions of people and animals globally. T. cruzi is considered one of the least studied and most poorly understood tropical disease-causing parasites, in part because of the relative lack of facile genetic engineering tools. This situation has improved recently through the application of clustered regularly interspaced short palindromic repeats–CRISPR-associated protein 9 (CRISPR-Cas9) technology, but a number of limitations remain, including the toxicity of continuous Cas9 expression and the long drug marker selection times. In this study, we show that the delivery of ribonucleoprotein (RNP) complexes composed of recombinant Cas9 from Staphylococcus aureus (SaCas9), but not from the more routinely used Streptococcus pyogenes Cas9 (SpCas9), and in vitro-transcribed single guide RNAs (sgRNAs) results in rapid gene edits in T. cruzi and other kinetoplastids at frequencies approaching 100%. The highly efficient genome editing via SaCas9/sgRNA RNPs was obtained for both reporter and endogenous genes and observed in multiple parasite life cycle stages in various strains of T. cruzi, as well as in T. brucei and Leishmania major. RNP complex delivery was also used to successfully tag proteins at endogenous loci and to assess the biological functions of essential genes. Thus, the use of SaCas9 RNP complexes for gene editing in kinetoplastids provides a simple, rapid, and cloning- and selection-free method to assess gene function in these important human pathogens. IMPORTANCE Protozoan parasites remain some of the highest-impact human and animal pathogens, with very limited treatment and prevention options. The development of improved therapeutics and vaccines depends on a better understanding of the unique biology of these organisms, and understanding their biology, in turn, requires the ability to track and manipulate the products of genes. In this work, we describe new methods that are available to essentially any laboratory and applicable to any parasite isolate for easily and rapidly editing the genomes of kinetoplastid parasites. We demonstrate that these methods provide the means to quickly assess function, including that of the products of essential genes and potential targets of drugs, and to tag gene products at their endogenous loci. This is all achieved without gene cloning or drug selection. We expect this advance to enable investigations, especially in Trypanosoma cruzi and Leishmania spp., that have eluded investigators for decades.Lia Carolina Soares MedeirosLilith SouthDuo PengJuan M. BustamanteWei WangMolly BunkofskeNatasha PerumalFernando Sanchez-ValdezRick L. TarletonAmerican Society for MicrobiologyarticleCRISPRCas9LeishmaniaSaCas9TrypanosomaTrypanosoma bruceiMicrobiologyQR1-502ENmBio, Vol 8, Iss 6 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
CRISPR Cas9 Leishmania SaCas9 Trypanosoma Trypanosoma brucei Microbiology QR1-502 |
spellingShingle |
CRISPR Cas9 Leishmania SaCas9 Trypanosoma Trypanosoma brucei Microbiology QR1-502 Lia Carolina Soares Medeiros Lilith South Duo Peng Juan M. Bustamante Wei Wang Molly Bunkofske Natasha Perumal Fernando Sanchez-Valdez Rick L. Tarleton Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins |
description |
ABSTRACT Trypanosomatids (order Kinetoplastida), including the human pathogens Trypanosoma cruzi (agent of Chagas disease), Trypanosoma brucei, (African sleeping sickness), and Leishmania (leishmaniasis), affect millions of people and animals globally. T. cruzi is considered one of the least studied and most poorly understood tropical disease-causing parasites, in part because of the relative lack of facile genetic engineering tools. This situation has improved recently through the application of clustered regularly interspaced short palindromic repeats–CRISPR-associated protein 9 (CRISPR-Cas9) technology, but a number of limitations remain, including the toxicity of continuous Cas9 expression and the long drug marker selection times. In this study, we show that the delivery of ribonucleoprotein (RNP) complexes composed of recombinant Cas9 from Staphylococcus aureus (SaCas9), but not from the more routinely used Streptococcus pyogenes Cas9 (SpCas9), and in vitro-transcribed single guide RNAs (sgRNAs) results in rapid gene edits in T. cruzi and other kinetoplastids at frequencies approaching 100%. The highly efficient genome editing via SaCas9/sgRNA RNPs was obtained for both reporter and endogenous genes and observed in multiple parasite life cycle stages in various strains of T. cruzi, as well as in T. brucei and Leishmania major. RNP complex delivery was also used to successfully tag proteins at endogenous loci and to assess the biological functions of essential genes. Thus, the use of SaCas9 RNP complexes for gene editing in kinetoplastids provides a simple, rapid, and cloning- and selection-free method to assess gene function in these important human pathogens. IMPORTANCE Protozoan parasites remain some of the highest-impact human and animal pathogens, with very limited treatment and prevention options. The development of improved therapeutics and vaccines depends on a better understanding of the unique biology of these organisms, and understanding their biology, in turn, requires the ability to track and manipulate the products of genes. In this work, we describe new methods that are available to essentially any laboratory and applicable to any parasite isolate for easily and rapidly editing the genomes of kinetoplastid parasites. We demonstrate that these methods provide the means to quickly assess function, including that of the products of essential genes and potential targets of drugs, and to tag gene products at their endogenous loci. This is all achieved without gene cloning or drug selection. We expect this advance to enable investigations, especially in Trypanosoma cruzi and Leishmania spp., that have eluded investigators for decades. |
format |
article |
author |
Lia Carolina Soares Medeiros Lilith South Duo Peng Juan M. Bustamante Wei Wang Molly Bunkofske Natasha Perumal Fernando Sanchez-Valdez Rick L. Tarleton |
author_facet |
Lia Carolina Soares Medeiros Lilith South Duo Peng Juan M. Bustamante Wei Wang Molly Bunkofske Natasha Perumal Fernando Sanchez-Valdez Rick L. Tarleton |
author_sort |
Lia Carolina Soares Medeiros |
title |
Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins |
title_short |
Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins |
title_full |
Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins |
title_fullStr |
Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins |
title_full_unstemmed |
Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins |
title_sort |
rapid, selection-free, high-efficiency genome editing in protozoan parasites using crispr-cas9 ribonucleoproteins |
publisher |
American Society for Microbiology |
publishDate |
2017 |
url |
https://doaj.org/article/24601f0528a048dc8f67bc65964beaaa |
work_keys_str_mv |
AT liacarolinasoaresmedeiros rapidselectionfreehighefficiencygenomeeditinginprotozoanparasitesusingcrisprcas9ribonucleoproteins AT lilithsouth rapidselectionfreehighefficiencygenomeeditinginprotozoanparasitesusingcrisprcas9ribonucleoproteins AT duopeng rapidselectionfreehighefficiencygenomeeditinginprotozoanparasitesusingcrisprcas9ribonucleoproteins AT juanmbustamante rapidselectionfreehighefficiencygenomeeditinginprotozoanparasitesusingcrisprcas9ribonucleoproteins AT weiwang rapidselectionfreehighefficiencygenomeeditinginprotozoanparasitesusingcrisprcas9ribonucleoproteins AT mollybunkofske rapidselectionfreehighefficiencygenomeeditinginprotozoanparasitesusingcrisprcas9ribonucleoproteins AT natashaperumal rapidselectionfreehighefficiencygenomeeditinginprotozoanparasitesusingcrisprcas9ribonucleoproteins AT fernandosanchezvaldez rapidselectionfreehighefficiencygenomeeditinginprotozoanparasitesusingcrisprcas9ribonucleoproteins AT rickltarleton rapidselectionfreehighefficiencygenomeeditinginprotozoanparasitesusingcrisprcas9ribonucleoproteins |
_version_ |
1718427262457479168 |