Comparison of Current Deep Convolutional Neural Networks for the Segmentation of Breast Masses in Mammograms
Breast cancer causes approximately 684,996 deaths worldwide, making it the leading cause of female cancer mortality. However, these figures can be reduced with early diagnosis through mammographic imaging, allowing for the timely and effective treatment of this disease. To establish the best tools f...
Enregistré dans:
Auteurs principaux: | Andres Anaya-Isaza, Leonel Mera-Jimenez, Johan Manuel Cabrera-Chavarro, Lorena Guachi-Guachi, Diego Peluffo-Ordonez, Jorge Ivan Rios-Patino |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/24da7c29b1dc4ff89aab881bc428dc86 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Unsupervised Domain Adaptation Network With Category-Centric Prototype Aligner for Biomedical Image Segmentation
par: Ping Gong, et autres
Publié: (2021) -
AEDCN-Net: Accurate and Efficient Deep Convolutional Neural Network Model for Medical Image Segmentation
par: Bekhzod Olimov, et autres
Publié: (2021) -
Valor predictivo del sistema BIRADS para detección de cáncer de mama con mamografía en biopsias por punción con aguja gruesa: Revisión de 5 años en un hospital de referencia
par: Bellolio,Enrique, et autres
Publié: (2015) -
Cancer de mama oculto: dos casos clínicos analizados según el concepto actual
par: Lee Ch,Kuen, et autres
Publié: (2006) -
Global Context and Enhanced Feature Guided Residual Refinement Network for 3D Cardiovascular Image Segmentation
par: Jingjing Liu, et autres
Publié: (2021)