Accelerated mapping of electronic density of states patterns of metallic nanoparticles via machine-learning
Abstract Within first-principles density functional theory (DFT) frameworks, it is challenging to predict the electronic structures of nanoparticles (NPs) accurately but fast. Herein, a machine-learning architecture is proposed to rapidly but reasonably predict electronic density of states (DOS) pat...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/259d11e4579848368d87ec0c8dd33891 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|