Accelerated mapping of electronic density of states patterns of metallic nanoparticles via machine-learning

Abstract Within first-principles density functional theory (DFT) frameworks, it is challenging to predict the electronic structures of nanoparticles (NPs) accurately but fast. Herein, a machine-learning architecture is proposed to rapidly but reasonably predict electronic density of states (DOS) pat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kihoon Bang, Byung Chul Yeo, Donghun Kim, Sang Soo Han, Hyuck Mo Lee
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/259d11e4579848368d87ec0c8dd33891
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares