Fast Logic with Slow Qubits: Microwave-Activated Controlled-Z Gate on Low-Frequency Fluxoniums
We demonstrate a controlled-Z gate between capacitively coupled fluxonium qubits with transition frequencies 72.3 and 136.3 MHz. The gate is activated by a 61.6-ns-long pulse at a frequency between noncomputational transitions |10⟩-|20⟩ and |11⟩-|21⟩, during which the qubits complete only four and e...
Saved in:
Main Authors: | Quentin Ficheux, Long B. Nguyen, Aaron Somoroff, Haonan Xiong, Konstantin N. Nesterov, Maxim G. Vavilov, Vladimir E. Manucharyan |
---|---|
Format: | article |
Language: | EN |
Published: |
American Physical Society
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/25e56d548f74432b9b79eb9e361e537e |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Implementing a universal gate set on a logical qubit encoded in an oscillator
by: Reinier W. Heeres, et al.
Published: (2017) -
Universal holonomic quantum gates over geometric spin qubits with polarised microwaves
by: Kodai Nagata, et al.
Published: (2018) -
Leakage reduction in fast superconducting qubit gates via optimal control
by: M. Werninghaus, et al.
Published: (2021) -
Building logical qubits in a superconducting quantum computing system
by: Jay M. Gambetta, et al.
Published: (2017) -
Room-temperature photonic logical qubits via second-order nonlinearities
by: Stefan Krastanov, et al.
Published: (2021)