Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma
Abstract Radiogenomics uses machine-learning (ML) to directly connect the morphologic and physiological appearance of tumors on clinical imaging with underlying genomic features. Despite extensive growth in the area of radiogenomics across many cancers, and its potential role in advancing clinical d...
Enregistré dans:
Auteurs principaux: | Leland S. Hu, Lujia Wang, Andrea Hawkins-Daarud, Jennifer M. Eschbacher, Kyle W. Singleton, Pamela R. Jackson, Kamala Clark-Swanson, Christopher P. Sereduk, Sen Peng, Panwen Wang, Junwen Wang, Leslie C. Baxter, Kris A. Smith, Gina L. Mazza, Ashley M. Stokes, Bernard R. Bendok, Richard S. Zimmerman, Chandan Krishna, Alyx B. Porter, Maciej M. Mrugala, Joseph M. Hoxworth, Teresa Wu, Nhan L. Tran, Kristin R. Swanson, Jing Li |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/29a1d68a17774a75aedf2ebb89547a04 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Shape matters: morphological metrics of glioblastoma imaging abnormalities as biomarkers of prognosis
par: Lee Curtin, et autres
Publié: (2021) -
Radiogenomics: Hunting Down Liver Metastasis in Colorectal Cancer Patients
par: Carolina de la Pinta, et autres
Publié: (2021) -
Radiogenomic signatures reveal multiscale intratumour heterogeneity associated with biological functions and survival in breast cancer
par: Ming Fan, et autres
Publié: (2020) -
MuSA: a graphical user interface for multi-OMICs data integration in radiogenomic studies
par: Mario Zanfardino, et autres
Publié: (2021) -
Integrative Radiogenomics Approach for Risk Assessment of Postoperative and Adjuvant Chemotherapy Benefits for Gastric Cancer Patients
par: Yin Jin, et autres
Publié: (2021)