Simulating self-learning in photorefractive optical reservoir computers
Abstract Photorefractive materials exhibit an interesting plasticity under the influence of an optical field. By extending the finite-difference time-domain method to include the photorefractive effect, we explore how this property can be exploited in the context of neuromorphic computing for teleco...
Enregistré dans:
Auteurs principaux: | Floris Laporte, Joni Dambre, Peter Bienstman |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/29b2a9f56c7c4082a9533fd4bbd1c787 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Automated design of complex dynamic systems.
par: Michiel Hermans, et autres
Publié: (2014) -
A Hopf physical reservoir computer
par: Md Raf E Ul Shougat, et autres
Publié: (2021) -
Assessment of Corneal Stromal Remodeling and Regeneration after Photorefractive Keratectomy
par: Pouriska B. Kivanany, et autres
Publié: (2018) -
Physical reservoir computing with origami and its application to robotic crawling
par: Priyanka Bhovad, et autres
Publié: (2021) -
Next generation reservoir computing
par: Daniel J. Gauthier, et autres
Publié: (2021)