A Novel Metric-Learning-Based Method for Multi-Instance Textureless Objects’ 6D Pose Estimation
6D pose estimation of objects is essential for intelligent manufacturing. Current methods mainly place emphasis on the single object’s pose estimation, which limit its use in real-world applications. In this paper, we propose a multi-instance framework of 6D pose estimation for textureless objects i...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2a38798e66854dbe80b824a1dcc85322 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | 6D pose estimation of objects is essential for intelligent manufacturing. Current methods mainly place emphasis on the single object’s pose estimation, which limit its use in real-world applications. In this paper, we propose a multi-instance framework of 6D pose estimation for textureless objects in an industrial environment. We use a two-stage pipeline for this purpose. In the detection stage, EfficientDet is used to detect target instances from the image. In the pose estimation stage, the cropped images are first interpolated into a fixed size, then fed into a pseudo-siamese graph matching network to calculate dense point correspondences. A modified circle loss is defined to measure the differences of positive and negative correspondences. Experiments on the antenna support demonstrate the effectiveness and advantages of our proposed method. |
---|