SDImpute: A statistical block imputation method based on cell-level and gene-level information for dropouts in single-cell RNA-seq data.
The single-cell RNA sequencing (scRNA-seq) technologies obtain gene expression at single-cell resolution and provide a tool for exploring cell heterogeneity and cell types. As the low amount of extracted mRNA copies per cell, scRNA-seq data exhibit a large number of dropouts, which hinders the downs...
Saved in:
Main Authors: | Jing Qi, Yang Zhou, Zicen Zhao, Shuilin Jin |
---|---|
Format: | article |
Language: | EN |
Published: |
Public Library of Science (PLoS)
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/2ab4286ecc6f4833a97d4daf1b183d78 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Embracing the dropouts in single-cell RNA-seq analysis
by: Peng Qiu
Published: (2020) -
An accurate and robust imputation method scImpute for single-cell RNA-seq data
by: Wei Vivian Li, et al.
Published: (2018) -
ScLRTC: imputation for single-cell RNA-seq data via low-rank tensor completion
by: Xiutao Pan, et al.
Published: (2021) -
Capturing hidden regulation based on noise change of gene expression level from single cell RNA-seq in yeast
by: Thoma Itoh, et al.
Published: (2021) -
Detection and removal of barcode swapping in single-cell RNA-seq data
by: Jonathan A. Griffiths, et al.
Published: (2018)