Mapping the global design space of nanophotonic components using machine learning pattern recognition

Machine learning is increasingly used in nanophotonics for designing novel classes of complex devices but the general parameter behavior is often neglected. Here, the authors report a new methodology to discover and visualize optimal design spaces with respect to multiple performance objectives.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Daniele Melati, Yuri Grinberg, Mohsen Kamandar Dezfouli, Siegfried Janz, Pavel Cheben, Jens H. Schmid, Alejandro Sánchez-Postigo, Dan-Xia Xu
Format: article
Langue:EN
Publié: Nature Portfolio 2019
Sujets:
Q
Accès en ligne:https://doaj.org/article/2abb231657a342b8a35368c0295add15
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!