Mapping the global design space of nanophotonic components using machine learning pattern recognition
Machine learning is increasingly used in nanophotonics for designing novel classes of complex devices but the general parameter behavior is often neglected. Here, the authors report a new methodology to discover and visualize optimal design spaces with respect to multiple performance objectives.
Enregistré dans:
Auteurs principaux: | , , , , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/2abb231657a342b8a35368c0295add15 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|