Mapping the global design space of nanophotonic components using machine learning pattern recognition
Machine learning is increasingly used in nanophotonics for designing novel classes of complex devices but the general parameter behavior is often neglected. Here, the authors report a new methodology to discover and visualize optimal design spaces with respect to multiple performance objectives.
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2abb231657a342b8a35368c0295add15 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2abb231657a342b8a35368c0295add15 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2abb231657a342b8a35368c0295add152021-12-02T16:58:16ZMapping the global design space of nanophotonic components using machine learning pattern recognition10.1038/s41467-019-12698-12041-1723https://doaj.org/article/2abb231657a342b8a35368c0295add152019-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-12698-1https://doaj.org/toc/2041-1723Machine learning is increasingly used in nanophotonics for designing novel classes of complex devices but the general parameter behavior is often neglected. Here, the authors report a new methodology to discover and visualize optimal design spaces with respect to multiple performance objectives.Daniele MelatiYuri GrinbergMohsen Kamandar DezfouliSiegfried JanzPavel ChebenJens H. SchmidAlejandro Sánchez-PostigoDan-Xia XuNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-9 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Daniele Melati Yuri Grinberg Mohsen Kamandar Dezfouli Siegfried Janz Pavel Cheben Jens H. Schmid Alejandro Sánchez-Postigo Dan-Xia Xu Mapping the global design space of nanophotonic components using machine learning pattern recognition |
description |
Machine learning is increasingly used in nanophotonics for designing novel classes of complex devices but the general parameter behavior is often neglected. Here, the authors report a new methodology to discover and visualize optimal design spaces with respect to multiple performance objectives. |
format |
article |
author |
Daniele Melati Yuri Grinberg Mohsen Kamandar Dezfouli Siegfried Janz Pavel Cheben Jens H. Schmid Alejandro Sánchez-Postigo Dan-Xia Xu |
author_facet |
Daniele Melati Yuri Grinberg Mohsen Kamandar Dezfouli Siegfried Janz Pavel Cheben Jens H. Schmid Alejandro Sánchez-Postigo Dan-Xia Xu |
author_sort |
Daniele Melati |
title |
Mapping the global design space of nanophotonic components using machine learning pattern recognition |
title_short |
Mapping the global design space of nanophotonic components using machine learning pattern recognition |
title_full |
Mapping the global design space of nanophotonic components using machine learning pattern recognition |
title_fullStr |
Mapping the global design space of nanophotonic components using machine learning pattern recognition |
title_full_unstemmed |
Mapping the global design space of nanophotonic components using machine learning pattern recognition |
title_sort |
mapping the global design space of nanophotonic components using machine learning pattern recognition |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/2abb231657a342b8a35368c0295add15 |
work_keys_str_mv |
AT danielemelati mappingtheglobaldesignspaceofnanophotoniccomponentsusingmachinelearningpatternrecognition AT yurigrinberg mappingtheglobaldesignspaceofnanophotoniccomponentsusingmachinelearningpatternrecognition AT mohsenkamandardezfouli mappingtheglobaldesignspaceofnanophotoniccomponentsusingmachinelearningpatternrecognition AT siegfriedjanz mappingtheglobaldesignspaceofnanophotoniccomponentsusingmachinelearningpatternrecognition AT pavelcheben mappingtheglobaldesignspaceofnanophotoniccomponentsusingmachinelearningpatternrecognition AT jenshschmid mappingtheglobaldesignspaceofnanophotoniccomponentsusingmachinelearningpatternrecognition AT alejandrosanchezpostigo mappingtheglobaldesignspaceofnanophotoniccomponentsusingmachinelearningpatternrecognition AT danxiaxu mappingtheglobaldesignspaceofnanophotoniccomponentsusingmachinelearningpatternrecognition |
_version_ |
1718382316961660928 |