Mapping the global design space of nanophotonic components using machine learning pattern recognition

Machine learning is increasingly used in nanophotonics for designing novel classes of complex devices but the general parameter behavior is often neglected. Here, the authors report a new methodology to discover and visualize optimal design spaces with respect to multiple performance objectives.

Guardado en:
Detalles Bibliográficos
Autores principales: Daniele Melati, Yuri Grinberg, Mohsen Kamandar Dezfouli, Siegfried Janz, Pavel Cheben, Jens H. Schmid, Alejandro Sánchez-Postigo, Dan-Xia Xu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/2abb231657a342b8a35368c0295add15
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2abb231657a342b8a35368c0295add15
record_format dspace
spelling oai:doaj.org-article:2abb231657a342b8a35368c0295add152021-12-02T16:58:16ZMapping the global design space of nanophotonic components using machine learning pattern recognition10.1038/s41467-019-12698-12041-1723https://doaj.org/article/2abb231657a342b8a35368c0295add152019-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-12698-1https://doaj.org/toc/2041-1723Machine learning is increasingly used in nanophotonics for designing novel classes of complex devices but the general parameter behavior is often neglected. Here, the authors report a new methodology to discover and visualize optimal design spaces with respect to multiple performance objectives.Daniele MelatiYuri GrinbergMohsen Kamandar DezfouliSiegfried JanzPavel ChebenJens H. SchmidAlejandro Sánchez-PostigoDan-Xia XuNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-9 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Daniele Melati
Yuri Grinberg
Mohsen Kamandar Dezfouli
Siegfried Janz
Pavel Cheben
Jens H. Schmid
Alejandro Sánchez-Postigo
Dan-Xia Xu
Mapping the global design space of nanophotonic components using machine learning pattern recognition
description Machine learning is increasingly used in nanophotonics for designing novel classes of complex devices but the general parameter behavior is often neglected. Here, the authors report a new methodology to discover and visualize optimal design spaces with respect to multiple performance objectives.
format article
author Daniele Melati
Yuri Grinberg
Mohsen Kamandar Dezfouli
Siegfried Janz
Pavel Cheben
Jens H. Schmid
Alejandro Sánchez-Postigo
Dan-Xia Xu
author_facet Daniele Melati
Yuri Grinberg
Mohsen Kamandar Dezfouli
Siegfried Janz
Pavel Cheben
Jens H. Schmid
Alejandro Sánchez-Postigo
Dan-Xia Xu
author_sort Daniele Melati
title Mapping the global design space of nanophotonic components using machine learning pattern recognition
title_short Mapping the global design space of nanophotonic components using machine learning pattern recognition
title_full Mapping the global design space of nanophotonic components using machine learning pattern recognition
title_fullStr Mapping the global design space of nanophotonic components using machine learning pattern recognition
title_full_unstemmed Mapping the global design space of nanophotonic components using machine learning pattern recognition
title_sort mapping the global design space of nanophotonic components using machine learning pattern recognition
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/2abb231657a342b8a35368c0295add15
work_keys_str_mv AT danielemelati mappingtheglobaldesignspaceofnanophotoniccomponentsusingmachinelearningpatternrecognition
AT yurigrinberg mappingtheglobaldesignspaceofnanophotoniccomponentsusingmachinelearningpatternrecognition
AT mohsenkamandardezfouli mappingtheglobaldesignspaceofnanophotoniccomponentsusingmachinelearningpatternrecognition
AT siegfriedjanz mappingtheglobaldesignspaceofnanophotoniccomponentsusingmachinelearningpatternrecognition
AT pavelcheben mappingtheglobaldesignspaceofnanophotoniccomponentsusingmachinelearningpatternrecognition
AT jenshschmid mappingtheglobaldesignspaceofnanophotoniccomponentsusingmachinelearningpatternrecognition
AT alejandrosanchezpostigo mappingtheglobaldesignspaceofnanophotoniccomponentsusingmachinelearningpatternrecognition
AT danxiaxu mappingtheglobaldesignspaceofnanophotoniccomponentsusingmachinelearningpatternrecognition
_version_ 1718382316961660928