Mapping the global design space of nanophotonic components using machine learning pattern recognition
Machine learning is increasingly used in nanophotonics for designing novel classes of complex devices but the general parameter behavior is often neglected. Here, the authors report a new methodology to discover and visualize optimal design spaces with respect to multiple performance objectives.
Guardado en:
Autores principales: | Daniele Melati, Yuri Grinberg, Mohsen Kamandar Dezfouli, Siegfried Janz, Pavel Cheben, Jens H. Schmid, Alejandro Sánchez-Postigo, Dan-Xia Xu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2abb231657a342b8a35368c0295add15 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Advances in Plasmonics and Nanophotonics
por: Burak Gerislioglu, et al.
Publicado: (2021) -
Metasurface Freeform Nanophotonics
por: Alan Zhan, et al.
Publicado: (2017) -
Design of Non-Deterministic Quasi-random Nanophotonic Structures Using Fourier Space Representations
por: Shuangcheng Yu, et al.
Publicado: (2017) -
Fabrication-constrained nanophotonic inverse design
por: Alexander Y. Piggott, et al.
Publicado: (2017) -
A nanophotonic laser on a graph
por: Michele Gaio, et al.
Publicado: (2019)