Text Classification Model Enhanced by Unlabeled Data for LaTeX Formula
Generic language models pretrained on large unspecific domains are currently the foundation of NLP. Labeled data are limited in most model training due to the cost of manual annotation, especially in domains including massive Proper Nouns such as mathematics and biology, where it affects the accurac...
Enregistré dans:
| Auteurs principaux: | Hua Cheng, Renjie Yu, Yixin Tang, Yiquan Fang, Tao Cheng |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
MDPI AG
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/2b40f93513304981a835803b16c74883 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
LaTeX tutorial for the standardization and automation of population analysis reports
par: Thomas Frank, et autres
Publié: (2021) -
ALERGIA AL LÁTEX EN EL PERÍODO PERIOPERATORIO
par: Fuentes H,Ricardo, et autres
Publié: (2015) -
TRATAMIENTOS PARA REDUCIR LOS DAÑOS POR LÁTEX EN MANGO (Mangifera indica)
par: Marta Montero, et autres
Publié: (2005) -
Editorial: Unsupervised Learning Models for Unlabeled Genomic, Transcriptomic & Proteomic Data
par: Jianing Xi, et autres
Publié: (2021) -
Alergia al látex en un hospital pediátrico: Caracterización y factores de riesgo
par: Bailey,Michael, et autres
Publié: (2016)