Ceramide kinase regulates TNF-α-induced immune responses in human monocytic cells
Abstract Ceramide kinase (CERK) phosphorylates ceramide to produce ceramide-1-phosphate (C1P), which is involved in the development of metabolic inflammation. TNF-α modulates inflammatory responses in monocytes associated with various inflammatory disorders; however, the underlying mechanisms remain...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2cd04aab0a024548a7b6682f41f39173 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Ceramide kinase (CERK) phosphorylates ceramide to produce ceramide-1-phosphate (C1P), which is involved in the development of metabolic inflammation. TNF-α modulates inflammatory responses in monocytes associated with various inflammatory disorders; however, the underlying mechanisms remain not fully understood. Here, we investigated the role of CERK in TNF-α-induced inflammatory responses in monocytes. Our results show that disruption of CERK activity in monocytes, either by chemical inhibitor NVP-231 or by small interfering RNA (siRNA), results in the defective expression of inflammatory markers including CD11c, CD11b and HLA-DR in response to TNF-α. Our data show that TNF-α upregulates ceramide phosphorylation. Inhibition of CERK in monocytes significantly reduced the secretion of IL-1β and MCP-1. Similar results were observed in CERK-downregulated cells. TNF-α-induced phosphorylation of JNK, p38 and NF-κB was reduced by inhibition of CERK. Additionally, NF-κB/AP-1 activity was suppressed by the inhibition of CERK. Clinically, obese individuals had higher levels of CERK expression in PBMCs compared to lean individuals, which correlated with their TNF-α levels. Taken together, these results suggest that CERK plays a key role in regulating inflammatory responses in human monocytes during TNF-α stimulation. CERK may be a relevant target for developing novel therapies for chronic inflammatory diseases. |
---|