An information-theoretic framework for deciphering pleiotropic and noisy biochemical signaling

Signalling responses are marked by substantial cell-to-cell variability. Here, the authors propose an information theoretic framework that accounts for multiple inputs and temporal dynamics to analyse how signals flow through shared network components.

Guardado en:
Detalles Bibliográficos
Autores principales: Tomasz Jetka, Karol Nienałtowski, Sarah Filippi, Michael P. H. Stumpf, Michał Komorowski
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/2daf3e307ce74d31936f4ab4d8af4613
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2daf3e307ce74d31936f4ab4d8af4613
record_format dspace
spelling oai:doaj.org-article:2daf3e307ce74d31936f4ab4d8af46132021-12-02T17:32:47ZAn information-theoretic framework for deciphering pleiotropic and noisy biochemical signaling10.1038/s41467-018-07085-12041-1723https://doaj.org/article/2daf3e307ce74d31936f4ab4d8af46132018-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-07085-1https://doaj.org/toc/2041-1723Signalling responses are marked by substantial cell-to-cell variability. Here, the authors propose an information theoretic framework that accounts for multiple inputs and temporal dynamics to analyse how signals flow through shared network components.Tomasz JetkaKarol NienałtowskiSarah FilippiMichael P. H. StumpfMichał KomorowskiNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-9 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Tomasz Jetka
Karol Nienałtowski
Sarah Filippi
Michael P. H. Stumpf
Michał Komorowski
An information-theoretic framework for deciphering pleiotropic and noisy biochemical signaling
description Signalling responses are marked by substantial cell-to-cell variability. Here, the authors propose an information theoretic framework that accounts for multiple inputs and temporal dynamics to analyse how signals flow through shared network components.
format article
author Tomasz Jetka
Karol Nienałtowski
Sarah Filippi
Michael P. H. Stumpf
Michał Komorowski
author_facet Tomasz Jetka
Karol Nienałtowski
Sarah Filippi
Michael P. H. Stumpf
Michał Komorowski
author_sort Tomasz Jetka
title An information-theoretic framework for deciphering pleiotropic and noisy biochemical signaling
title_short An information-theoretic framework for deciphering pleiotropic and noisy biochemical signaling
title_full An information-theoretic framework for deciphering pleiotropic and noisy biochemical signaling
title_fullStr An information-theoretic framework for deciphering pleiotropic and noisy biochemical signaling
title_full_unstemmed An information-theoretic framework for deciphering pleiotropic and noisy biochemical signaling
title_sort information-theoretic framework for deciphering pleiotropic and noisy biochemical signaling
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/2daf3e307ce74d31936f4ab4d8af4613
work_keys_str_mv AT tomaszjetka aninformationtheoreticframeworkfordecipheringpleiotropicandnoisybiochemicalsignaling
AT karolnienałtowski aninformationtheoreticframeworkfordecipheringpleiotropicandnoisybiochemicalsignaling
AT sarahfilippi aninformationtheoreticframeworkfordecipheringpleiotropicandnoisybiochemicalsignaling
AT michaelphstumpf aninformationtheoreticframeworkfordecipheringpleiotropicandnoisybiochemicalsignaling
AT michałkomorowski aninformationtheoreticframeworkfordecipheringpleiotropicandnoisybiochemicalsignaling
AT tomaszjetka informationtheoreticframeworkfordecipheringpleiotropicandnoisybiochemicalsignaling
AT karolnienałtowski informationtheoreticframeworkfordecipheringpleiotropicandnoisybiochemicalsignaling
AT sarahfilippi informationtheoreticframeworkfordecipheringpleiotropicandnoisybiochemicalsignaling
AT michaelphstumpf informationtheoreticframeworkfordecipheringpleiotropicandnoisybiochemicalsignaling
AT michałkomorowski informationtheoreticframeworkfordecipheringpleiotropicandnoisybiochemicalsignaling
_version_ 1718380174524809216