An information-theoretic framework for deciphering pleiotropic and noisy biochemical signaling
Signalling responses are marked by substantial cell-to-cell variability. Here, the authors propose an information theoretic framework that accounts for multiple inputs and temporal dynamics to analyse how signals flow through shared network components.
Guardado en:
Autores principales: | Tomasz Jetka, Karol Nienałtowski, Sarah Filippi, Michael P. H. Stumpf, Michał Komorowski |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2daf3e307ce74d31936f4ab4d8af4613 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Maximizing the information content of experiments in systems biology.
por: Juliane Liepe, et al.
Publicado: (2013) -
Functional Genomic and Biochemical Analysis Reveals Pleiotropic Effect of Congo Red on Aspergillus fumigatus
por: Zhonghua Liu, et al.
Publicado: (2021) -
Fractional response analysis reveals logarithmic cytokine responses in cellular populations
por: Karol Nienałtowski, et al.
Publicado: (2021) -
Quantifying information accumulation encoded in the dynamics of biochemical signaling
por: Ying Tang, et al.
Publicado: (2021) -
How noisy does a noisy miner have to be? Amplitude adjustments of alarm calls in an avian urban 'adapter'.
por: Hélène Lowry, et al.
Publicado: (2012)