Embeddings from deep learning transfer GO annotations beyond homology
Abstract Knowing protein function is crucial to advance molecular and medical biology, yet experimental function annotations through the Gene Ontology (GO) exist for fewer than 0.5% of all known proteins. Computational methods bridge this sequence-annotation gap typically through homology-based anno...
Guardado en:
Autores principales: | Maria Littmann, Michael Heinzinger, Christian Dallago, Tobias Olenyi, Burkhard Rost |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/30047864d85f4054b8b99879adff217c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Going beyond Learning and Listening to Meaningful Pursuit of Equity for Black Microbiologists
por: Emmanuel C. Adukwu, et al.
Publicado: (2020) -
Deep learning for universal linear embeddings of nonlinear dynamics
por: Bethany Lusch, et al.
Publicado: (2018) -
Machine learning with persistent homology and chemical word embeddings improves prediction accuracy and interpretability in metal-organic frameworks
por: Aditi S. Krishnapriyan, et al.
Publicado: (2021) -
Cycles, transfers, and motivic homology theories
por: Voevodsky, Vladimir
Publicado: (2000) -
Deep learning predicts boiling heat transfer
por: Youngjoon Suh, et al.
Publicado: (2021)