Providing an optimized model to detect driver genes from heterogeneous cancer samples using restriction in subspace learning

Abstract Extracting the drivers from genes with mutation, and segregation of driver and passenger genes are known as the most controversial issues in cancer studies. According to the heterogeneity of cancer, it is not possible to identify indicators under a group of associated drivers, in order to i...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Ali Reza Ebadi, Ali Soleimani, Abdulbaghi Ghaderzadeh
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/302fafc3054648acbe50e49650d61be5
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!