Providing an optimized model to detect driver genes from heterogeneous cancer samples using restriction in subspace learning
Abstract Extracting the drivers from genes with mutation, and segregation of driver and passenger genes are known as the most controversial issues in cancer studies. According to the heterogeneity of cancer, it is not possible to identify indicators under a group of associated drivers, in order to i...
Guardado en:
Autores principales: | Ali Reza Ebadi, Ali Soleimani, Abdulbaghi Ghaderzadeh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/302fafc3054648acbe50e49650d61be5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multitask learning over shared subspaces.
por: Nicholas Menghi, et al.
Publicado: (2021) -
SSRE: Cell Type Detection Based on Sparse Subspace Representation and Similarity Enhancement
por: Zhenlan Liang, et al.
Publicado: (2021) -
Deep Spatial-Spectral Subspace Clustering for Hyperspectral Images Based on Contrastive Learning
por: Xiang Hu, et al.
Publicado: (2021) -
EEG Mental Recognition Based on RKHS Learning and Source Dictionary Regularized RKHS Subspace Learning
por: Wenjie Lei, et al.
Publicado: (2021) -
Corrigendum to “Deep Learning in the Detection and Diagnosis of COVID-19 Using Radiology Modalities: A Systematic Review”
por: Mustafa Ghaderzadeh, et al.
Publicado: (2021)