Providing an optimized model to detect driver genes from heterogeneous cancer samples using restriction in subspace learning

Abstract Extracting the drivers from genes with mutation, and segregation of driver and passenger genes are known as the most controversial issues in cancer studies. According to the heterogeneity of cancer, it is not possible to identify indicators under a group of associated drivers, in order to i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ali Reza Ebadi, Ali Soleimani, Abdulbaghi Ghaderzadeh
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/302fafc3054648acbe50e49650d61be5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares