Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets
The analysis of essential genes in pathogens can be used to discover potential antimicrobial targets. Here, the authors use a machine learning model and chemogenomic analyses to generate genome-wide gene essentiality predictions for the fungal pathogen Candida albicans, define the function of three...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/30b53e35a0bc440e930c93cb62d5cbf8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The analysis of essential genes in pathogens can be used to discover potential antimicrobial targets. Here, the authors use a machine learning model and chemogenomic analyses to generate genome-wide gene essentiality predictions for the fungal pathogen Candida albicans, define the function of three uncharacterized essential genes, and identify the target of a new antifungal compound. |
---|