Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets

The analysis of essential genes in pathogens can be used to discover potential antimicrobial targets. Here, the authors use a machine learning model and chemogenomic analyses to generate genome-wide gene essentiality predictions for the fungal pathogen Candida albicans, define the function of three...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ci Fu, Xiang Zhang, Amanda O. Veri, Kali R. Iyer, Emma Lash, Alice Xue, Huijuan Yan, Nicole M. Revie, Cassandra Wong, Zhen-Yuan Lin, Elizabeth J. Polvi, Sean D. Liston, Benjamin VanderSluis, Jing Hou, Yoko Yashiroda, Anne-Claude Gingras, Charles Boone, Teresa R. O’Meara, Matthew J. O’Meara, Suzanne Noble, Nicole Robbins, Chad L. Myers, Leah E. Cowen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/30b53e35a0bc440e930c93cb62d5cbf8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:30b53e35a0bc440e930c93cb62d5cbf8
record_format dspace
spelling oai:doaj.org-article:30b53e35a0bc440e930c93cb62d5cbf82021-11-14T12:35:00ZLeveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets10.1038/s41467-021-26850-32041-1723https://doaj.org/article/30b53e35a0bc440e930c93cb62d5cbf82021-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-26850-3https://doaj.org/toc/2041-1723The analysis of essential genes in pathogens can be used to discover potential antimicrobial targets. Here, the authors use a machine learning model and chemogenomic analyses to generate genome-wide gene essentiality predictions for the fungal pathogen Candida albicans, define the function of three uncharacterized essential genes, and identify the target of a new antifungal compound.Ci FuXiang ZhangAmanda O. VeriKali R. IyerEmma LashAlice XueHuijuan YanNicole M. RevieCassandra WongZhen-Yuan LinElizabeth J. PolviSean D. ListonBenjamin VanderSluisJing HouYoko YashirodaAnne-Claude GingrasCharles BooneTeresa R. O’MearaMatthew J. O’MearaSuzanne NobleNicole RobbinsChad L. MyersLeah E. CowenNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-18 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Ci Fu
Xiang Zhang
Amanda O. Veri
Kali R. Iyer
Emma Lash
Alice Xue
Huijuan Yan
Nicole M. Revie
Cassandra Wong
Zhen-Yuan Lin
Elizabeth J. Polvi
Sean D. Liston
Benjamin VanderSluis
Jing Hou
Yoko Yashiroda
Anne-Claude Gingras
Charles Boone
Teresa R. O’Meara
Matthew J. O’Meara
Suzanne Noble
Nicole Robbins
Chad L. Myers
Leah E. Cowen
Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets
description The analysis of essential genes in pathogens can be used to discover potential antimicrobial targets. Here, the authors use a machine learning model and chemogenomic analyses to generate genome-wide gene essentiality predictions for the fungal pathogen Candida albicans, define the function of three uncharacterized essential genes, and identify the target of a new antifungal compound.
format article
author Ci Fu
Xiang Zhang
Amanda O. Veri
Kali R. Iyer
Emma Lash
Alice Xue
Huijuan Yan
Nicole M. Revie
Cassandra Wong
Zhen-Yuan Lin
Elizabeth J. Polvi
Sean D. Liston
Benjamin VanderSluis
Jing Hou
Yoko Yashiroda
Anne-Claude Gingras
Charles Boone
Teresa R. O’Meara
Matthew J. O’Meara
Suzanne Noble
Nicole Robbins
Chad L. Myers
Leah E. Cowen
author_facet Ci Fu
Xiang Zhang
Amanda O. Veri
Kali R. Iyer
Emma Lash
Alice Xue
Huijuan Yan
Nicole M. Revie
Cassandra Wong
Zhen-Yuan Lin
Elizabeth J. Polvi
Sean D. Liston
Benjamin VanderSluis
Jing Hou
Yoko Yashiroda
Anne-Claude Gingras
Charles Boone
Teresa R. O’Meara
Matthew J. O’Meara
Suzanne Noble
Nicole Robbins
Chad L. Myers
Leah E. Cowen
author_sort Ci Fu
title Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets
title_short Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets
title_full Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets
title_fullStr Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets
title_full_unstemmed Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets
title_sort leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/30b53e35a0bc440e930c93cb62d5cbf8
work_keys_str_mv AT cifu leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT xiangzhang leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT amandaoveri leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT kaliriyer leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT emmalash leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT alicexue leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT huijuanyan leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT nicolemrevie leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT cassandrawong leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT zhenyuanlin leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT elizabethjpolvi leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT seandliston leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT benjaminvandersluis leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT jinghou leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT yokoyashiroda leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT anneclaudegingras leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT charlesboone leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT teresaromeara leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT matthewjomeara leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT suzannenoble leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT nicolerobbins leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT chadlmyers leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT leahecowen leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
_version_ 1718429099136909312