Quantum generative adversarial networks with multiple superconducting qubits
Abstract Generative adversarial networks are an emerging technique with wide applications in machine learning, which have achieved dramatic success in a number of challenging tasks including image and video generation. When equipped with quantum processors, their quantum counterparts—called quantum...
Guardado en:
Autores principales: | Kaixuan Huang, Zheng-An Wang, Chao Song, Kai Xu, Hekang Li, Zhen Wang, Qiujiang Guo, Zixuan Song, Zhi-Bo Liu, Dongning Zheng, Dong-Ling Deng, H. Wang, Jian-Guo Tian, Heng Fan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/30e6fcf2e9ea43b394baa841def6964c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Observation of Bloch oscillations and Wannier-Stark localization on a superconducting quantum processor
por: Xue-Yi Guo, et al.
Publicado: (2021) -
Time-varying quantum channel models for superconducting qubits
por: Josu Etxezarreta Martinez, et al.
Publicado: (2021) -
Building logical qubits in a superconducting quantum computing system
por: Jay M. Gambetta, et al.
Publicado: (2017) -
Verification of a resetting protocol for an uncontrolled superconducting qubit
por: Ming Gong, et al.
Publicado: (2020) -
Experimental demonstration of entanglement-enabled universal quantum cloning in a circuit
por: Zhen-Biao Yang, et al.
Publicado: (2021)