Quantum generative adversarial networks with multiple superconducting qubits
Abstract Generative adversarial networks are an emerging technique with wide applications in machine learning, which have achieved dramatic success in a number of challenging tasks including image and video generation. When equipped with quantum processors, their quantum counterparts—called quantum...
Enregistré dans:
Auteurs principaux: | Kaixuan Huang, Zheng-An Wang, Chao Song, Kai Xu, Hekang Li, Zhen Wang, Qiujiang Guo, Zixuan Song, Zhi-Bo Liu, Dongning Zheng, Dong-Ling Deng, H. Wang, Jian-Guo Tian, Heng Fan |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/30e6fcf2e9ea43b394baa841def6964c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Observation of Bloch oscillations and Wannier-Stark localization on a superconducting quantum processor
par: Xue-Yi Guo, et autres
Publié: (2021) -
Time-varying quantum channel models for superconducting qubits
par: Josu Etxezarreta Martinez, et autres
Publié: (2021) -
Building logical qubits in a superconducting quantum computing system
par: Jay M. Gambetta, et autres
Publié: (2017) -
Verification of a resetting protocol for an uncontrolled superconducting qubit
par: Ming Gong, et autres
Publié: (2020) -
Experimental demonstration of entanglement-enabled universal quantum cloning in a circuit
par: Zhen-Biao Yang, et autres
Publié: (2021)