Ranking of a wide multidomain set of predictor variables of children obesity by machine learning variable importance techniques
Abstract The increased prevalence of childhood obesity is expected to translate in the near future into a concomitant soaring of multiple cardio-metabolic diseases. Obesity has a complex, multifactorial etiology, that includes multiple and multidomain potential risk factors: genetics, dietary and ph...
Enregistré dans:
Auteurs principaux: | Helena Marcos-Pasero, Gonzalo Colmenarejo, Elena Aguilar-Aguilar, Ana Ramírez de Molina, Guillermo Reglero, Viviana Loria-Kohen |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3137e6569f2743b28bb18e71bab182c5 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Depolarization of multidomain ferroelectric materials
par: Dong Zhao, et autres
Publié: (2019) -
Technological Capability's Predictor Variables
par: Reichert,Fernanda Maciel, et autres
Publié: (2011) -
Sensitive proportion in ranked set sampling.
par: Azhar Mehmood Abbasi, et autres
Publié: (2021) -
Using variable importance measures to identify a small set of SNPs to predict heading date in perennial ryegrass
par: Stephen L. Byrne, et autres
Publié: (2017) -
Molecular cannibalism: Sacrificial materials as precursors for hollow and multidomain single crystals
par: Maria Chiara di Gregorio, et autres
Publié: (2021)