Numerical Solution of Nonlinear Stochastic Itô–Volterra Integral Equations Driven by Fractional Brownian Motion Using Block Pulse Functions
This paper presents a valid numerical method to solve nonlinear stochastic Itô–Volterra integral equations (SIVIEs) driven by fractional Brownian motion (FBM) with Hurst parameter H∈1/2,1. On the basis of FBM and block pulse functions (BPFs), a new stochastic operational matrix is proposed. The nonl...
Enregistré dans:
Auteurs principaux: | Mengting Deng, Guo Jiang, Ting Ke |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Hindawi Limited
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/323ca4bd9c8746a49818d0c29e9500ac |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Almost Periodic Solutions to Impulsive Stochastic Delay Differential Equations Driven by Fractional Brownian Motion With 12 < H < 1
par: Lili Gao, et autres
Publié: (2021) -
Optimal control of stochastic system with Fractional Brownian Motion
par: Chaofeng Zhao, et autres
Publié: (2021) -
Effective numerical technique for nonlinear Caputo-Fabrizio systems of fractional Volterra integro-differential equations in Hilbert space
par: Fatima Youbi, et autres
Publié: (2022) -
Existence Solution for Nonlinear System of Fractional Integrodifferential Equations of Volterra Type with Fractional Boundary Conditions
par: Faraj Y. Ishak
Publié: (2020) -
Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion
par: Vasile Brătian, et autres
Publié: (2021)