Reinforcement learning control of a biomechanical model of the upper extremity
Abstract Among the infinite number of possible movements that can be produced, humans are commonly assumed to choose those that optimize criteria such as minimizing movement time, subject to certain movement constraints like signal-dependent and constant motor noise. While so far these assumptions h...
Guardado en:
Autores principales: | Florian Fischer, Miroslav Bachinski, Markus Klar, Arthur Fleig, Jörg Müller |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/33d3fa44c29842128b53c1355182dbf9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Aging contributes to inflammation in upper extremity tendons and declines in forelimb agility in a rat model of upper extremity overuse.
por: David M Kietrys, et al.
Publicado: (2012) -
The Biomechanics Behind Extreme Osteophagy in Tyrannosaurus rex
por: Paul M. Gignac, et al.
Publicado: (2017) -
The biomechanical origin of extreme wing allometry in hummingbirds
por: Dimitri A. Skandalis, et al.
Publicado: (2017) -
Parallel model-based and model-free reinforcement learning for card sorting performance
por: Alexander Steinke, et al.
Publicado: (2020) -
Salvage of the injured upper extremity
por: David V Feliciano
Publicado: (2021)