Reinforcement learning derived chemotherapeutic schedules for robust patient-specific therapy

Abstract The in-silico development of a chemotherapeutic dosing schedule for treating cancer relies upon a parameterization of a particular tumour growth model to describe the dynamics of the cancer in response to the dose of the drug. In practice, it is often prohibitively difficult to ensure the v...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Brydon Eastman, Michelle Przedborski, Mohammad Kohandel
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/346e4b6869474fd3982e56778d98ce5a
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!