Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement

Predicting RNA structure from sequence is challenging due to the relative sparsity of experimentally-determined RNA 3D structures for model training. Here, the authors propose a way to incorporate knowledge on interactions at the atomic and base–base level to refine the prediction of RNA structures....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Peng Xiong, Ruibo Wu, Jian Zhan, Yaoqi Zhou
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/3728b2ded75444fcbbd371504429c7bc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Predicting RNA structure from sequence is challenging due to the relative sparsity of experimentally-determined RNA 3D structures for model training. Here, the authors propose a way to incorporate knowledge on interactions at the atomic and base–base level to refine the prediction of RNA structures.