Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement
Predicting RNA structure from sequence is challenging due to the relative sparsity of experimentally-determined RNA 3D structures for model training. Here, the authors propose a way to incorporate knowledge on interactions at the atomic and base–base level to refine the prediction of RNA structures....
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3728b2ded75444fcbbd371504429c7bc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3728b2ded75444fcbbd371504429c7bc |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3728b2ded75444fcbbd371504429c7bc2021-12-02T15:43:16ZPairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement10.1038/s41467-021-23100-42041-1723https://doaj.org/article/3728b2ded75444fcbbd371504429c7bc2021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23100-4https://doaj.org/toc/2041-1723Predicting RNA structure from sequence is challenging due to the relative sparsity of experimentally-determined RNA 3D structures for model training. Here, the authors propose a way to incorporate knowledge on interactions at the atomic and base–base level to refine the prediction of RNA structures.Peng XiongRuibo WuJian ZhanYaoqi ZhouNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Peng Xiong Ruibo Wu Jian Zhan Yaoqi Zhou Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement |
description |
Predicting RNA structure from sequence is challenging due to the relative sparsity of experimentally-determined RNA 3D structures for model training. Here, the authors propose a way to incorporate knowledge on interactions at the atomic and base–base level to refine the prediction of RNA structures. |
format |
article |
author |
Peng Xiong Ruibo Wu Jian Zhan Yaoqi Zhou |
author_facet |
Peng Xiong Ruibo Wu Jian Zhan Yaoqi Zhou |
author_sort |
Peng Xiong |
title |
Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement |
title_short |
Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement |
title_full |
Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement |
title_fullStr |
Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement |
title_full_unstemmed |
Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement |
title_sort |
pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving rna model refinement |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/3728b2ded75444fcbbd371504429c7bc |
work_keys_str_mv |
AT pengxiong pairingahighresolutionstatisticalpotentialwithanucleobasecentricsamplingalgorithmforimprovingrnamodelrefinement AT ruibowu pairingahighresolutionstatisticalpotentialwithanucleobasecentricsamplingalgorithmforimprovingrnamodelrefinement AT jianzhan pairingahighresolutionstatisticalpotentialwithanucleobasecentricsamplingalgorithmforimprovingrnamodelrefinement AT yaoqizhou pairingahighresolutionstatisticalpotentialwithanucleobasecentricsamplingalgorithmforimprovingrnamodelrefinement |
_version_ |
1718385802419896320 |