Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement

Predicting RNA structure from sequence is challenging due to the relative sparsity of experimentally-determined RNA 3D structures for model training. Here, the authors propose a way to incorporate knowledge on interactions at the atomic and base–base level to refine the prediction of RNA structures....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Peng Xiong, Ruibo Wu, Jian Zhan, Yaoqi Zhou
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/3728b2ded75444fcbbd371504429c7bc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3728b2ded75444fcbbd371504429c7bc
record_format dspace
spelling oai:doaj.org-article:3728b2ded75444fcbbd371504429c7bc2021-12-02T15:43:16ZPairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement10.1038/s41467-021-23100-42041-1723https://doaj.org/article/3728b2ded75444fcbbd371504429c7bc2021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23100-4https://doaj.org/toc/2041-1723Predicting RNA structure from sequence is challenging due to the relative sparsity of experimentally-determined RNA 3D structures for model training. Here, the authors propose a way to incorporate knowledge on interactions at the atomic and base–base level to refine the prediction of RNA structures.Peng XiongRuibo WuJian ZhanYaoqi ZhouNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Peng Xiong
Ruibo Wu
Jian Zhan
Yaoqi Zhou
Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement
description Predicting RNA structure from sequence is challenging due to the relative sparsity of experimentally-determined RNA 3D structures for model training. Here, the authors propose a way to incorporate knowledge on interactions at the atomic and base–base level to refine the prediction of RNA structures.
format article
author Peng Xiong
Ruibo Wu
Jian Zhan
Yaoqi Zhou
author_facet Peng Xiong
Ruibo Wu
Jian Zhan
Yaoqi Zhou
author_sort Peng Xiong
title Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement
title_short Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement
title_full Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement
title_fullStr Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement
title_full_unstemmed Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement
title_sort pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving rna model refinement
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/3728b2ded75444fcbbd371504429c7bc
work_keys_str_mv AT pengxiong pairingahighresolutionstatisticalpotentialwithanucleobasecentricsamplingalgorithmforimprovingrnamodelrefinement
AT ruibowu pairingahighresolutionstatisticalpotentialwithanucleobasecentricsamplingalgorithmforimprovingrnamodelrefinement
AT jianzhan pairingahighresolutionstatisticalpotentialwithanucleobasecentricsamplingalgorithmforimprovingrnamodelrefinement
AT yaoqizhou pairingahighresolutionstatisticalpotentialwithanucleobasecentricsamplingalgorithmforimprovingrnamodelrefinement
_version_ 1718385802419896320