PM10 and PM2.5 real-time prediction models using an interpolated convolutional neural network

Abstract In this paper, we propose a real-time prediction model that can respond to particulate matters (PM) in the air, which are an indication of poor air quality. The model applies interpolation to air quality and weather data and then uses a Convolutional Neural Network (CNN) to predict PM conce...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Sangwon Chae, Joonhyeok Shin, Sungjun Kwon, Sangmok Lee, Sungwon Kang, Donghyun Lee
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/3830b8fdb2bc4eb888ec0b6ae92c3406
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!