TMT-based quantitative proteomics analysis reveals the attenuated replication mechanism of Newcastle disease virus caused by nuclear localization signal mutation in viral matrix protein

Nuclear localization of cytoplasmic RNA virus proteins mediated by intrinsic nuclear localization signal (NLS) plays essential roles in successful virus replication. We previously reported that NLS mutation in the matrix (M) protein obviously attenuates the replication and pathogenicity of Newcastle...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zhiqiang Duan, Chao Yuan, Yifan Han, Lei Zhou, Jiafu Zhao, Yong Ruan, Jiaqi Chen, Mengmeng Ni, Xinqin Ji
Formato: article
Lenguaje:EN
Publicado: Taylor & Francis Group 2020
Materias:
tmt
Acceso en línea:https://doaj.org/article/39168f0e1b27410e8d645f0c2dea02d4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:39168f0e1b27410e8d645f0c2dea02d4
record_format dspace
spelling oai:doaj.org-article:39168f0e1b27410e8d645f0c2dea02d42021-11-17T14:21:58ZTMT-based quantitative proteomics analysis reveals the attenuated replication mechanism of Newcastle disease virus caused by nuclear localization signal mutation in viral matrix protein2150-55942150-560810.1080/21505594.2020.1770482https://doaj.org/article/39168f0e1b27410e8d645f0c2dea02d42020-12-01T00:00:00Zhttp://dx.doi.org/10.1080/21505594.2020.1770482https://doaj.org/toc/2150-5594https://doaj.org/toc/2150-5608Nuclear localization of cytoplasmic RNA virus proteins mediated by intrinsic nuclear localization signal (NLS) plays essential roles in successful virus replication. We previously reported that NLS mutation in the matrix (M) protein obviously attenuates the replication and pathogenicity of Newcastle disease virus (NDV), but the attenuated replication mechanism remains unclear. In this study, we showed that M/NLS mutation not only disrupted M’s nucleocytoplasmic trafficking characteristic but also impaired viral RNA synthesis and transcription. Using TMT-based quantitative proteomics analysis of BSR-T7/5 cells infected with the parental NDV rSS1GFP and the mutant NDV rSS1GFP-M/NLSm harboring M/NLS mutation, we found that rSS1GFP infection stimulated much greater quantities and more expression changes of differentially expressed proteins involved in host cell transcription, ribosomal structure, posttranslational modification, and intracellular trafficking than rSS1GFP-M/NLSm infection. Further in-depth analysis revealed that the dominant nuclear accumulation of M protein inhibited host cell transcription, RNA processing and modification, protein synthesis, posttranscriptional modification and transport; and this kind of inhibition could be weakened when most of M protein was confined outside the nucleus. More importantly, we found that the function of M protein in the cytoplasm effected the inhibition of TIFA expression in a dose-dependent manner, and promoted NDV replication by down-regulating TIFA/TRAF6/NF-κB-mediated production of cytokines. It was the first report about the involvement of M protein in NDV immune evasion. Taken together, our findings demonstrate that NDV replication is closely related to the nucleocytoplasmic trafficking of M protein, which accelerates our understanding of the molecular functions of NDV M protein.Zhiqiang DuanChao YuanYifan HanLei ZhouJiafu ZhaoYong RuanJiaqi ChenMengmeng NiXinqin JiTaylor & Francis Grouparticlenewcastle disease virusmatrix proteinnuclear localization signalnucleocytoplasmic traffickingtmtquantitative proteomicsInfectious and parasitic diseasesRC109-216ENVirulence, Vol 11, Iss 1, Pp 607-635 (2020)
institution DOAJ
collection DOAJ
language EN
topic newcastle disease virus
matrix protein
nuclear localization signal
nucleocytoplasmic trafficking
tmt
quantitative proteomics
Infectious and parasitic diseases
RC109-216
spellingShingle newcastle disease virus
matrix protein
nuclear localization signal
nucleocytoplasmic trafficking
tmt
quantitative proteomics
Infectious and parasitic diseases
RC109-216
Zhiqiang Duan
Chao Yuan
Yifan Han
Lei Zhou
Jiafu Zhao
Yong Ruan
Jiaqi Chen
Mengmeng Ni
Xinqin Ji
TMT-based quantitative proteomics analysis reveals the attenuated replication mechanism of Newcastle disease virus caused by nuclear localization signal mutation in viral matrix protein
description Nuclear localization of cytoplasmic RNA virus proteins mediated by intrinsic nuclear localization signal (NLS) plays essential roles in successful virus replication. We previously reported that NLS mutation in the matrix (M) protein obviously attenuates the replication and pathogenicity of Newcastle disease virus (NDV), but the attenuated replication mechanism remains unclear. In this study, we showed that M/NLS mutation not only disrupted M’s nucleocytoplasmic trafficking characteristic but also impaired viral RNA synthesis and transcription. Using TMT-based quantitative proteomics analysis of BSR-T7/5 cells infected with the parental NDV rSS1GFP and the mutant NDV rSS1GFP-M/NLSm harboring M/NLS mutation, we found that rSS1GFP infection stimulated much greater quantities and more expression changes of differentially expressed proteins involved in host cell transcription, ribosomal structure, posttranslational modification, and intracellular trafficking than rSS1GFP-M/NLSm infection. Further in-depth analysis revealed that the dominant nuclear accumulation of M protein inhibited host cell transcription, RNA processing and modification, protein synthesis, posttranscriptional modification and transport; and this kind of inhibition could be weakened when most of M protein was confined outside the nucleus. More importantly, we found that the function of M protein in the cytoplasm effected the inhibition of TIFA expression in a dose-dependent manner, and promoted NDV replication by down-regulating TIFA/TRAF6/NF-κB-mediated production of cytokines. It was the first report about the involvement of M protein in NDV immune evasion. Taken together, our findings demonstrate that NDV replication is closely related to the nucleocytoplasmic trafficking of M protein, which accelerates our understanding of the molecular functions of NDV M protein.
format article
author Zhiqiang Duan
Chao Yuan
Yifan Han
Lei Zhou
Jiafu Zhao
Yong Ruan
Jiaqi Chen
Mengmeng Ni
Xinqin Ji
author_facet Zhiqiang Duan
Chao Yuan
Yifan Han
Lei Zhou
Jiafu Zhao
Yong Ruan
Jiaqi Chen
Mengmeng Ni
Xinqin Ji
author_sort Zhiqiang Duan
title TMT-based quantitative proteomics analysis reveals the attenuated replication mechanism of Newcastle disease virus caused by nuclear localization signal mutation in viral matrix protein
title_short TMT-based quantitative proteomics analysis reveals the attenuated replication mechanism of Newcastle disease virus caused by nuclear localization signal mutation in viral matrix protein
title_full TMT-based quantitative proteomics analysis reveals the attenuated replication mechanism of Newcastle disease virus caused by nuclear localization signal mutation in viral matrix protein
title_fullStr TMT-based quantitative proteomics analysis reveals the attenuated replication mechanism of Newcastle disease virus caused by nuclear localization signal mutation in viral matrix protein
title_full_unstemmed TMT-based quantitative proteomics analysis reveals the attenuated replication mechanism of Newcastle disease virus caused by nuclear localization signal mutation in viral matrix protein
title_sort tmt-based quantitative proteomics analysis reveals the attenuated replication mechanism of newcastle disease virus caused by nuclear localization signal mutation in viral matrix protein
publisher Taylor & Francis Group
publishDate 2020
url https://doaj.org/article/39168f0e1b27410e8d645f0c2dea02d4
work_keys_str_mv AT zhiqiangduan tmtbasedquantitativeproteomicsanalysisrevealstheattenuatedreplicationmechanismofnewcastlediseaseviruscausedbynuclearlocalizationsignalmutationinviralmatrixprotein
AT chaoyuan tmtbasedquantitativeproteomicsanalysisrevealstheattenuatedreplicationmechanismofnewcastlediseaseviruscausedbynuclearlocalizationsignalmutationinviralmatrixprotein
AT yifanhan tmtbasedquantitativeproteomicsanalysisrevealstheattenuatedreplicationmechanismofnewcastlediseaseviruscausedbynuclearlocalizationsignalmutationinviralmatrixprotein
AT leizhou tmtbasedquantitativeproteomicsanalysisrevealstheattenuatedreplicationmechanismofnewcastlediseaseviruscausedbynuclearlocalizationsignalmutationinviralmatrixprotein
AT jiafuzhao tmtbasedquantitativeproteomicsanalysisrevealstheattenuatedreplicationmechanismofnewcastlediseaseviruscausedbynuclearlocalizationsignalmutationinviralmatrixprotein
AT yongruan tmtbasedquantitativeproteomicsanalysisrevealstheattenuatedreplicationmechanismofnewcastlediseaseviruscausedbynuclearlocalizationsignalmutationinviralmatrixprotein
AT jiaqichen tmtbasedquantitativeproteomicsanalysisrevealstheattenuatedreplicationmechanismofnewcastlediseaseviruscausedbynuclearlocalizationsignalmutationinviralmatrixprotein
AT mengmengni tmtbasedquantitativeproteomicsanalysisrevealstheattenuatedreplicationmechanismofnewcastlediseaseviruscausedbynuclearlocalizationsignalmutationinviralmatrixprotein
AT xinqinji tmtbasedquantitativeproteomicsanalysisrevealstheattenuatedreplicationmechanismofnewcastlediseaseviruscausedbynuclearlocalizationsignalmutationinviralmatrixprotein
_version_ 1718425474421489664