The Linear and Nonlinear Electro-Mechanical Fin Actuator

Electromechanical actuators are used in a wide variety of aerospace applications such as missiles, aircrafts and spy-fly etc. In this work a linear and nonlinear fin actuator mathematical model has been developed and its response is investigated by developing an algorithm for the system using MATLA...

Full description

Saved in:
Bibliographic Details
Main Authors: Shaimaa A. Mahdi, Zeina A. Abdul Redha
Format: article
Language:EN
Published: Al-Khwarizmi College of Engineering – University of Baghdad 2018
Subjects:
Online Access:https://doaj.org/article/394766d7d3ce45f8b5c34a548ca543fb
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electromechanical actuators are used in a wide variety of aerospace applications such as missiles, aircrafts and spy-fly etc. In this work a linear and nonlinear fin actuator mathematical model has been developed and its response is investigated by developing an algorithm for the system using MATLAB. The algorithm used to the linear model is the state space algorithm while the algorithm used to the nonlinear model is the discrete algorithm. The huge moment constant is varied from (-3000 to 3000) and the damping ratio is varied from (0.4 to 0.8).          The comparison between linear and nonlinear fin actuator response results shows that for linear model, the maximum overshoot is about 10%, rising time is 0.23 sec. and steady state occur at 0.51 sec., while For nonlinear model the maximum overshoot is about 5%, rising time is 0.26 sec. and steady state occurs at 2 sec.; i.e., the nonlinear fin actuator system gives faster and more accurate response than does the linear fin actuator system.