Interleukin 6 is increased in preclinical HNSCC models of acquired cetuximab resistance, but is not required for maintenance of resistance.

The epidermal growth factor receptor inhibitor cetuximab is the only oncogene-targeted agent that has been FDA approved for the treatment of head and neck squamous cell carcinoma (HNSCC). Currently, there are no biomarkers used in the clinic to predict which HNSCC tumors will respond to cetuximab, a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rachel A O'Keefe, Neil E Bhola, David S Lee, Daniel E Johnson, Jennifer R Grandis
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/3a82731b4be942d993e1bf5b570f6167
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3a82731b4be942d993e1bf5b570f6167
record_format dspace
spelling oai:doaj.org-article:3a82731b4be942d993e1bf5b570f61672021-12-02T20:11:29ZInterleukin 6 is increased in preclinical HNSCC models of acquired cetuximab resistance, but is not required for maintenance of resistance.1932-620310.1371/journal.pone.0227261https://doaj.org/article/3a82731b4be942d993e1bf5b570f61672020-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0227261https://doaj.org/toc/1932-6203The epidermal growth factor receptor inhibitor cetuximab is the only oncogene-targeted agent that has been FDA approved for the treatment of head and neck squamous cell carcinoma (HNSCC). Currently, there are no biomarkers used in the clinic to predict which HNSCC tumors will respond to cetuximab, and even in tumors that regress with treatment, acquired resistance occurs in the majority of cases. Though a number of mechanisms of acquired resistance to cetuximab have been identified in preclinical studies, no therapies targeting these resistance pathways have yet been effectively translated into the clinic. To address this unmet need, we examined the role of the cytokine interleukin 6 (IL-6) in acquired cetuximab resistance in preclinical models of HNSCC. We found that IL-6 secretion was increased in PE/CA-PJ49 cells that had acquired resistance to cetuximab compared to the parental cells from which they were derived. However, addition of exogenous IL-6 to parental cells did not promote cetuximab resistance, and inhibition of the IL-6 pathway did not restore cetuximab sensitivity in the cetuximab-resistant cells. Further examination of the IL-6 pathway revealed that expression of IL6R, which encodes a component of the IL-6 receptor, was decreased in cetuximab-resistant cells compared to parental cells, and that treatment of the cetuximab-resistant cells with exogenous IL-6 did not induce phosphorylation of signal transducer and activator of transcription 3, suggesting that the IL-6 pathway was functionally impaired in the cetuximab-resistant cells. These findings demonstrate that, even if IL-6 is increased in the context of cetuximab resistance, it is not necessarily required for maintenance of the resistant phenotype, and that targeting the IL-6 pathway may not restore sensitivity to cetuximab in cetuximab-refractory HNSCC.Rachel A O'KeefeNeil E BholaDavid S LeeDaniel E JohnsonJennifer R GrandisPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 15, Iss 1, p e0227261 (2020)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Rachel A O'Keefe
Neil E Bhola
David S Lee
Daniel E Johnson
Jennifer R Grandis
Interleukin 6 is increased in preclinical HNSCC models of acquired cetuximab resistance, but is not required for maintenance of resistance.
description The epidermal growth factor receptor inhibitor cetuximab is the only oncogene-targeted agent that has been FDA approved for the treatment of head and neck squamous cell carcinoma (HNSCC). Currently, there are no biomarkers used in the clinic to predict which HNSCC tumors will respond to cetuximab, and even in tumors that regress with treatment, acquired resistance occurs in the majority of cases. Though a number of mechanisms of acquired resistance to cetuximab have been identified in preclinical studies, no therapies targeting these resistance pathways have yet been effectively translated into the clinic. To address this unmet need, we examined the role of the cytokine interleukin 6 (IL-6) in acquired cetuximab resistance in preclinical models of HNSCC. We found that IL-6 secretion was increased in PE/CA-PJ49 cells that had acquired resistance to cetuximab compared to the parental cells from which they were derived. However, addition of exogenous IL-6 to parental cells did not promote cetuximab resistance, and inhibition of the IL-6 pathway did not restore cetuximab sensitivity in the cetuximab-resistant cells. Further examination of the IL-6 pathway revealed that expression of IL6R, which encodes a component of the IL-6 receptor, was decreased in cetuximab-resistant cells compared to parental cells, and that treatment of the cetuximab-resistant cells with exogenous IL-6 did not induce phosphorylation of signal transducer and activator of transcription 3, suggesting that the IL-6 pathway was functionally impaired in the cetuximab-resistant cells. These findings demonstrate that, even if IL-6 is increased in the context of cetuximab resistance, it is not necessarily required for maintenance of the resistant phenotype, and that targeting the IL-6 pathway may not restore sensitivity to cetuximab in cetuximab-refractory HNSCC.
format article
author Rachel A O'Keefe
Neil E Bhola
David S Lee
Daniel E Johnson
Jennifer R Grandis
author_facet Rachel A O'Keefe
Neil E Bhola
David S Lee
Daniel E Johnson
Jennifer R Grandis
author_sort Rachel A O'Keefe
title Interleukin 6 is increased in preclinical HNSCC models of acquired cetuximab resistance, but is not required for maintenance of resistance.
title_short Interleukin 6 is increased in preclinical HNSCC models of acquired cetuximab resistance, but is not required for maintenance of resistance.
title_full Interleukin 6 is increased in preclinical HNSCC models of acquired cetuximab resistance, but is not required for maintenance of resistance.
title_fullStr Interleukin 6 is increased in preclinical HNSCC models of acquired cetuximab resistance, but is not required for maintenance of resistance.
title_full_unstemmed Interleukin 6 is increased in preclinical HNSCC models of acquired cetuximab resistance, but is not required for maintenance of resistance.
title_sort interleukin 6 is increased in preclinical hnscc models of acquired cetuximab resistance, but is not required for maintenance of resistance.
publisher Public Library of Science (PLoS)
publishDate 2020
url https://doaj.org/article/3a82731b4be942d993e1bf5b570f6167
work_keys_str_mv AT rachelaokeefe interleukin6isincreasedinpreclinicalhnsccmodelsofacquiredcetuximabresistancebutisnotrequiredformaintenanceofresistance
AT neilebhola interleukin6isincreasedinpreclinicalhnsccmodelsofacquiredcetuximabresistancebutisnotrequiredformaintenanceofresistance
AT davidslee interleukin6isincreasedinpreclinicalhnsccmodelsofacquiredcetuximabresistancebutisnotrequiredformaintenanceofresistance
AT danielejohnson interleukin6isincreasedinpreclinicalhnsccmodelsofacquiredcetuximabresistancebutisnotrequiredformaintenanceofresistance
AT jenniferrgrandis interleukin6isincreasedinpreclinicalhnsccmodelsofacquiredcetuximabresistancebutisnotrequiredformaintenanceofresistance
_version_ 1718374876839936000