مدل سازی درصد کاهش هد جریان غلیظ نمکی با استفاده از هوش مصنوعی

جریان‌ غلیظ یکی از مهمترین عوامل در فرآیند رسوب‌گذاری سدها می‌باشد. چون این جریان‌ از عوامل موثر بر کاهش کارایی عمر سدهای بزرگ بوده، بنابراین درک الگوهای رسوب‌گذاری جهت مدیریت مخزن سدها بسیار کارآمد می‌باشد. براین اساس در این تحقیق درصد کاهش هد جریان غلیظ نمکی تحت تاثیر موانع نفوذپذیر ذوزنقه‌ای شکل...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: مهدی درخشان نیا, مهدی قمشی, سید سعید اسلامیان, سید محمود کاشفی پور
Format: article
Langue:FA
Publié: University of Tehran, College of Aburaihan 2021
Sujets:
Accès en ligne:https://doaj.org/article/3a889e78b64b46bf809502350d8c53ff
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:جریان‌ غلیظ یکی از مهمترین عوامل در فرآیند رسوب‌گذاری سدها می‌باشد. چون این جریان‌ از عوامل موثر بر کاهش کارایی عمر سدهای بزرگ بوده، بنابراین درک الگوهای رسوب‌گذاری جهت مدیریت مخزن سدها بسیار کارآمد می‌باشد. براین اساس در این تحقیق درصد کاهش هد جریان غلیظ نمکی تحت تاثیر موانع نفوذپذیر ذوزنقه‌ای شکل (پر شده با دانه-های شن با قطر 0.5 سانتی‌متر)، با در نظر گرفتن متغیرهایی همچون دبی، شیب، غلظت و ارتفاع موانع به‌صورت آزمایشگاهی مورد بررسی قرار گرفت، براساس نتایج حاصله اقدام به مدل‌سازی هد جریان غلیظ نمکی با روش شبکه عصبی مصنوعی پیش‌خور و روش کلاسیک رگرسیون چند متغیره شد و کارکرد این دو روش مورد مقایسه قرار گرفت. نتایج نشان داد که روش هوشمند شبکه عصبی مصنوعی پیش‌خور در مدل‌سازی درصد کاهش هد جریان غلیظ نمکی نسبت به روش رگسیون چند متغیره برتری قابل توجهی دارد.