The geometry of clinical labs and wellness states from deeply phenotyped humans

Longitudinal multi-omics measurements are highly valuable in studying heterogeneity in health and disease phenotypes. Here, the authors apply Pareto Task Inference to analyze the clinical lab tests of 3094 individuals and find three wellness states, and one aberrant health state defining this cohort...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Anat Zimmer, Yael Korem, Noa Rappaport, Tomasz Wilmanski, Priyanka Baloni, Kathleen Jade, Max Robinson, Andrew T. Magis, Jennifer Lovejoy, Sean M. Gibbons, Leroy Hood, Nathan D. Price
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/3bc217cadb6347bdb67f294b25377a9c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Longitudinal multi-omics measurements are highly valuable in studying heterogeneity in health and disease phenotypes. Here, the authors apply Pareto Task Inference to analyze the clinical lab tests of 3094 individuals and find three wellness states, and one aberrant health state defining this cohort.